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1. Trace distance between pure states.

(a) Calculate an expression for the trace distance between |0⟩ and cos(θ)|0⟩ + sin(θ)|1⟩
as a function of θ.

(b) Calculate an expression for the Euclidean distance between the two points in the
Bloch sphere that correspond to the pure states |0⟩ and cos(θ)|0⟩+ sin(θ)|1⟩.

(c) Repeat parts (a) and (b) for these two states: ρ =

(
1
2

0
0 1

2

)
and the pure state

cos(θ)|0⟩ + sin(θ)|1⟩. Give the trace distance between the two states and also the
Euclidean distance between the two points on the Bloch sphere.

2. The density matrix is in the eye of the beholder. Consider the following scenario.
Alice first flips a biased coin that has outcome 0 with probability cos2(π/8) and 1 with
probability sin2(π/8). If the coin value is 0 she creates the state |0⟩ and if the coin value
is 1 she creates the state |1⟩. Then Alice sends the state that she created to Bob (she
does not send the coin value).

(a) From Alice’s perspective (who knows the coin value), the density matrix of the state

she created will be either |0⟩⟨0| =
(

1 0
0 0

)
or |1⟩⟨1| =

(
0 0
0 1

)
. What is the

density matrix of the state from Bob’s perspective (who does not know the coin
value)? Give the four matrix entries of this density matrix.

(b) Suppose that, upon receiving the state from Alice, Bob measures it in the compu-
tational basis. The measurement process yields a classical bit and an output state
(“collapsed” to |0⟩ or |1⟩). Will Bob’s density matrix for the state (with Bob knowing
the classical measurement outcome) be the same as Alice’s?

Suppose that we modify the above scenario to one where Alice flips a fair coin (where
outcomes 0 and 1 each occur with probability 1/2) and if the coin value is 0 she creates
the state |ψ0⟩ = cos(π/8)|0⟩+ sin(π/8)|1⟩ and if the coin value is 1 she creates the state
|ψ1⟩ = cos(π/8)|0⟩ − sin(π/8)|1⟩. Alice sends the state (but not the coin value) to Bob.

(c) From Alice’s perspective (who knows the coin value), the density matrix of the state
she created will be either |ψ0⟩⟨ψ0| or |ψ1⟩⟨ψ1|. What is the density matrix of the
state from Bob’s perspective (who does not know the coin value)? Give the four
matrix entries of this density matrix.

(d) Suppose that, upon receiving the state from Alice, Bob measures it in the computa-
tional basis, yielding a classical bit and an output state (“collapsed” to |0⟩ or |1⟩).
Bob knows the classical bit outcome from his measurement, but does not reveal this
to Alice. Will Bob’s density matrix for the output state be the same as Alice’s?
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3. General conversion from Stinespring form to Krauss form. Suppose that you are
given a description of a quantum operation that takes an n-qubit state ρ as input and
produces an n′-qubit state σ as output, where the description is of the following form
(where n+m = n′ +m′):

i. Append an m qubits, in state |0m⟩ to the end of the input state.
ii. Apply an (n+m)-qubit unitary operation U .
iii. Trace out the first m′ qubits (resulting in an n′-qubit output).

Show how to implement this in Krauss form as

ρ 7→
∑
j∈S

AjρA
†
j,

where
∑

j∈S A
†
jAj = I. Please be careful with the dimensions of your matrices/vectors

(so that they make sense). Also, to avoid ambiguity between multiplication and tensor
product, write ⊗ explicitly to denote the latter (it will be assumed that AB means the
matrix product of A and B, as opposed to A⊗B).

4. Analysis of a particular quantum operation. Let p be an arbitrary real-valued
parameter such that 0 < p < 1. We will explore some nice properties of the one-qubit
operation defined by the two Krauss operators

A0 =

(
1 0
0

√
1− p

)
and A1 =

(
0

√
p

0 0

)
. (1)

It is easy to verity that A†
0A0 + A†

1A1 = I, so the operation Dp that maps each 2 × 2
density matrix ρ to

Dp(ρ) = A0ρA
†
0 + A1ρA

†
1 (2)

is indeed a valid quantum operation.

(a) Find a state that is a fixed point of Dp. A fixed point is a one-qubit density matrix
ρ0 such that Dp(ρ0) = ρ0.

(b) Show that the operation D
(2)
p , corresponding to applying Dp twice in succession (that

is, D
(2)
p (ρ) = Dp(Dp(ρ)) is equivalent to applying Dq once for some suitably chosen

value of q. Give an expression for q as a function of p.

(c) Generalizing part (b), we can also define the operation D
(k)
p , corresponding to ap-

plying Dp k times in succession. What are the Krauss operators of D
(k)
p ? Specify

their matrix entries with closed-form expressions in terms of p and k.

(d) Is limk→∞D(k)(ρ) = ρ0 for any initial state ρ, where ρ0 is the fixed point of Dp that
you gave in part (a)?

Question 5 is on the next page
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5. Constructing an AND gate as a quantum operation. Here we consider operations
that map the two-qubit state |a, b⟩ to the one-qubit state |a ∧ b⟩, for all a, b ∈ {0, 1}.
Of course, no unitary operation can perform this mapping, since the input and output
dimension do not match; however, general quantum operations can compute this mapping.

(a) Give k matrices A1, . . . , Ak (where k ≤ 4, and each Aj is a 2× 4 matrix) such that∑k
j=1A

†
jAj = I whose quantum operation computes the above mapping. In other

words, for all a, b ∈ {0, 1}, when ρ = |a, b⟩⟨a, b|,

k∑
j=1

AjρA
†
j = |a ∧ b⟩⟨a ∧ b|.

(b) Your operation from part (a) maps all basis states to pure states. Does it map all
pure input states to pure output states? Either prove the answer is yes, or provide
a counterexample.
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