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Assignment 3
Due date: October 24, 2013

1. A version of Simon’s problem modulo m (quantum part of the algorithm). Let
m be some n-bit number (2n−1 < m < 2n) and assume that we are given a black box
computing f : Zm×Zm → Zm that is promised to have the property: f(a1, a2) = f(b1, b2)
if and only if (a1, a2) − (b1, b2) ∈ S, where S = {k(r, 1) : k ∈ Zm} for some unknown
r ∈ Zm. Let the goal be to compute r.

Also, assume that we have a good implementation of Fm, the quantum Fourier transform
modulo m, and its inverse F †

m. (Technically, Fm can be defined in a qubit setting as an
n-qubit unitary operation, where on the basis states that are out of range, namely |a〉
with a ∈ {m, . . . , 2n − 1}, some other arbitrary unitary operation is applied.)

In class, we considered a quantum algorithm that proceeds as follows.

1. Initialize three quantum Zm-registers, each to state |0〉.
2. Apply Fm to the first and second register.

3. Compute f (with inputs from registers 1 and 2 and output added to register 3).

4. Apply F †
m to the first and second register.

5. Measure the first and second register (and ignore the third register).

Let the two outcome values of the measurement be (s1, s2) ∈ Zm × Zm. Begin by con-
vincing yourself that the state of the system just after step 3 is completed is

1

m

m−1!

x1=0

m−1!

x2=0

|x1〉|x2〉|f(x1, x2)〉.

In this question, we will show that, after step 5 is completed, for each (s1, s2) ∈ Zm×Zm,

Prob[ outcome is (s1, s2)] =

"
1
m

if (s1, s2) · (r, 1) = 0
0 if (s1, s2) · (r, 1) ∕= 0.

(1)

(a) For each a ∈ Zm, define Sa = S + (a, 0) (meaning that (a, 0) is added to every
element of S, modulo m). Prove that S0, S1, . . . , Sm−1 form a partition of Zm×Zm,
in the sense that:

i. For all a ∕= b, Sa ∩ Sb = ∅
ii. S0 ∪ S1 ∪ · · · ∪ Sm−1 = Zm×Zm.

(b) Prove that f(x1, x2) = f(y1, y2) if and only if (x1, x2) and (y1, y2) are in the same
element of the above partition (in other words, (x1, x2), (y1, y2) ∈ Sa, for some a).

(c) Prove that Equation (1) holds. (Hint: you may use the results of parts (a) and (b).)
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2. Determining the leading coefficient of a “linear” function. Let m be any integer
greater than 1. Consider the problem where one is given black-box access to a function
f : Zm → Zm such that f(x) = ax + b (arithmetic modulo m), for unknown parameters
a, b ∈ Zm, and the goal is to determine the coefficient a. The reversible form of the black
box is: (x, y) *→ (x, y + f(x)) (addition modulo m).

(a) Show that there is a classical algorithm solving this problem with 2 queries, and that
2 queries are required classically.

(b) Show that there is a quantum algorithm that solves this problem with 1 query to
the reversible black box for f . (Hint: you may use the quantum Fourier transform
Fm and/or F †

m and consider setting the target register to the state F †
m|1〉.)

(c) Optional for bonus credit: Consider the extension of the above where the function
is quadratic, f(x) = ax2 + bx + c (arithmetic modulo m), for unknown parameters
a, b, c ∈ Zm, and the goal is to determine the coefficient a. For this part, assume that
m is prime and m > 2. Show that: (i) any classical algorithm solving this problem
requires 3 queries to f ; (ii) there is a quantum algorithm that solves this problem
with 2 queries to f (the reversible black box for f).

3. Period inversion. Let p and q be integers greater than 1, and pq denote their prod-
uct. Recall that the quantum Fourier transform modulo pq is the pq-dimensional unitary
operation Fpq such that

Fpq|x〉 =
1

√
pq

pq−1!

y=0

"
e2πi/pq

#xy
|y〉

for each x ∈ Zpq.

(a) Define two quantum states |ψ1〉 and |ψ2〉 as

|ψ1〉 =
1
√
q
( |0〉 + |p〉+ |2p〉+ · · ·+ |(q − 1)p〉 ) = 1

√
q

q−1!

x=0

|xp〉

and

|ψ2〉 =
1
√
p
( |0〉+ |q〉+ |2q〉+ · · ·+ |(p− 1)q〉 ) = 1

√
p

p−1!

x=0

|xq〉.

Show that Fpq|ψ1〉 = |ψ2〉.
(b) Let s ∈ {0, 1, . . . , p− 1}, and define |ψ3〉 (a “shifted” version of |ψ1〉) as

|ψ3〉 =
1
√
q
( |s〉 + |s+ p〉+ |s+ 2p〉+ · · ·+ |s+ (q − 1)p〉 )

=
1
√
q

q−1!

x=0

|s+ xp〉.

What is Fpq|ψ3〉? Find a simple expression for this quantity. If Fpq|ψ3〉 is measured in
the computational basis, what is the probability distribution describing the outcome?
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4. Some consequences of putting inputs to unitaries in superposition.

(a) Let U be any n-qubit unitary, |ψ1〉, |ψ2〉 be orthogonal n-qubit states, and a1, a2 ∈
{0, 1}n such that the following property holds. For each j ∈ {1, 2}, if U |ψj〉 is
measured in the computational basis then the outcome is aj for sure (i.e., with
probability 1). Let α1,α2 be such that |α1|2 + |α2|2 = 1. Does it follow that, if
U(α1|ψ1〉+ α2|ψ2〉) is measured in the computational basis, then the outcome is

"
a1 with probability |α1|2
a2 with probability |α2|2?

Either prove it or give a counterexample.

(b) Let U be any n-qubit unitary, |ψ1〉 and |ψ2〉 be orthogonal n-qubit states, and
a1, b1, a2, b2 ∈ {0, 1}n such that the following property holds. For each j ∈ {1, 2}, if
U |ψj〉 is measured in the computational basis then the outcome is

"
aj with probability pj
bj with probability qj

(where pk + qk = 1). Let α1,α2 be such that |α1|2 + |α2|2 = 1. Does it follow that if
U(α1|ψ1〉+ α2|ψ2〉) is measured in the computational basis then the outcome is

#
$$%

$$&

a1 with probability p1|α1|2
b1 with probability q1|α1|2
a2 with probability p2|α2|2
b2 with probability q2|α2|2.

Either prove it or give a counterexample.

5. More consequences of putting inputs to unitaries in superposition. This ques-
tion is sort of a continuation of question 4, and pertains to a detail that arose in the
quantum algorithm for order-finding that was discussed in class. Let W denote a gen-
eralized n-qubit controlled-U gate (i.e., for all x, y ∈ {0, 1}n, W |x〉|y〉 = |x〉Ux|y〉) and
let |ψ1〉, |ψ2〉 be two orthogonal eigenvectors of U . Let V be any n-qubit unitary (for
order-finding, this was the inverse QFT F †). Also, let |φ〉 be any n-qubit state initial
state for the control-qubits of W (for order-finding, this was 1

2n/2

'
x |x〉). Suppose that

the following property holds. For each j ∈ {1, 2}, if the first register (i.e., the first n
qubits) of (V ⊗ I)W |φ〉|ψj〉 is measured in the computational basis then the outcome is

"
aj with probability pj
bj with probability qj

(where pk+ qk = 1). Prove that then, if the first register of (V ⊗ I)W |φ〉(α1|ψ1〉+α2|ψ2〉)
is measured in the computational basis, the outcome is

#
$$%

$$&

a1 with probability p1|α1|2
b1 with probability q1|α1|2
a2 with probability p2|α2|2
b2 with probability q2|α2|2.
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