QIC710/CS678/CO681/PH767/AM871 Introduction to Quantum Information Processing (F13)

Assignment 3

Due date: October 24, 2013

1. A version of Simon's problem modulo m (quantum part of the algorithm). Let m be some n-bit number ($2^{n-1}<m<2^{n}$) and assume that we are given a black box computing $f: \mathbb{Z}_{m} \times \mathbb{Z}_{m} \rightarrow \mathbb{Z}_{m}$ that is promised to have the property: $f\left(a_{1}, a_{2}\right)=f\left(b_{1}, b_{2}\right)$ if and only if $\left(a_{1}, a_{2}\right)-\left(b_{1}, b_{2}\right) \in S$, where $S=\left\{k(r, 1): k \in \mathbb{Z}_{m}\right\}$ for some unknown $r \in \mathbb{Z}_{m}$. Let the goal be to compute r.
Also, assume that we have a good implementation of F_{m}, the quantum Fourier transform modulo m, and its inverse F_{m}^{\dagger}. (Technically, F_{m} can be defined in a qubit setting as an n-qubit unitary operation, where on the basis states that are out of range, namely $|a\rangle$ with $a \in\left\{m, \ldots, 2^{n}-1\right\}$, some other arbitrary unitary operation is applied.)
In class, we considered a quantum algorithm that proceeds as follows.
2. Initialize three quantum \mathbb{Z}_{m}-registers, each to state $|0\rangle$.
3. Apply F_{m} to the first and second register.
4. Compute f (with inputs from registers 1 and 2 and output added to register 3).
5. Apply F_{m}^{\dagger} to the first and second register.
6. Measure the first and second register (and ignore the third register).

Let the two outcome values of the measurement be $\left(s_{1}, s_{2}\right) \in \mathbb{Z}_{m} \times \mathbb{Z}_{m}$. Begin by convincing yourself that the state of the system just after step 3 is completed is

$$
\frac{1}{m} \sum_{x_{1}=0}^{m-1} \sum_{x_{2}=0}^{m-1}\left|x_{1}\right\rangle\left|x_{2}\right\rangle\left|f\left(x_{1}, x_{2}\right)\right\rangle
$$

In this question, we will show that, after step 5 is completed, for each $\left(s_{1}, s_{2}\right) \in \mathbb{Z}_{m} \times \mathbb{Z}_{m}$,

$$
\operatorname{Prob}\left[\text { outcome is }\left(s_{1}, s_{2}\right)\right]= \begin{cases}\frac{1}{m} & \text { if }\left(s_{1}, s_{2}\right) \cdot(r, 1)=0 \tag{1}\\ 0 & \text { if }\left(s_{1}, s_{2}\right) \cdot(r, 1) \neq 0\end{cases}
$$

(a) For each $a \in \mathbb{Z}_{m}$, define $S_{a}=S+(a, 0)$ (meaning that $(a, 0)$ is added to every element of S, modulo m). Prove that $S_{0}, S_{1}, \ldots, S_{m-1}$ form a partition of $\mathbb{Z}_{m} \times \mathbb{Z}_{m}$, in the sense that:
i. For all $a \neq b, S_{a} \cap S_{b}=\emptyset$
ii. $S_{0} \cup S_{1} \cup \cdots \cup S_{m-1}=\mathbb{Z}_{m} \times \mathbb{Z}_{m}$.
(b) Prove that $f\left(x_{1}, x_{2}\right)=f\left(y_{1}, y_{2}\right)$ if and only if $\left(x_{1}, x_{2}\right)$ and $\left(y_{1}, y_{2}\right)$ are in the same element of the above partition (in other words, $\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \in S_{a}$, for some a).
(c) Prove that Equation (1) holds. (Hint: you may use the results of parts (a) and (b).)
2. Determining the leading coefficient of a "linear" function. Let m be any integer greater than 1. Consider the problem where one is given black-box access to a function $f: \mathbb{Z}_{m} \rightarrow \mathbb{Z}_{m}$ such that $f(x)=a x+b$ (arithmetic modulo m), for unknown parameters $a, b \in \mathbb{Z}_{m}$, and the goal is to determine the coefficient a. The reversible form of the black box is: $(x, y) \mapsto(x, y+f(x))$ (addition modulo m).
(a) Show that there is a classical algorithm solving this problem with 2 queries, and that 2 queries are required classically.
(b) Show that there is a quantum algorithm that solves this problem with 1 query to the reversible black box for f. (Hint: you may use the quantum Fourier transform F_{m} and/or F_{m}^{\dagger} and consider setting the target register to the state $F_{m}^{\dagger}|1\rangle$.)
(c) Optional for bonus credit: Consider the extension of the above where the function is quadratic, $f(x)=a x^{2}+b x+c$ (arithmetic modulo m), for unknown parameters $a, b, c \in \mathbb{Z}_{m}$, and the goal is to determine the coefficient a. For this part, assume that m is prime and $m>2$. Show that: (i) any classical algorithm solving this problem requires 3 queries to f; (ii) there is a quantum algorithm that solves this problem with 2 queries to f (the reversible black box for f).
3. Period inversion. Let p and q be integers greater than 1 , and $p q$ denote their product. Recall that the quantum Fourier transform modulo $p q$ is the $p q$-dimensional unitary operation $F_{p q}$ such that

$$
F_{p q}|x\rangle=\frac{1}{\sqrt{p q}} \sum_{y=0}^{p q-1}\left(e^{2 \pi i / p q}\right)^{x y}|y\rangle
$$

for each $x \in \mathbb{Z}_{p q}$.
(a) Define two quantum states $\left|\psi_{1}\right\rangle$ and $\left|\psi_{2}\right\rangle$ as

$$
\left|\psi_{1}\right\rangle=\frac{1}{\sqrt{q}}(|0\rangle+|p\rangle+|2 p\rangle+\cdots+|(q-1) p\rangle)=\frac{1}{\sqrt{q}} \sum_{x=0}^{q-1}|x p\rangle
$$

and

$$
\left|\psi_{2}\right\rangle=\frac{1}{\sqrt{p}}(|0\rangle+|q\rangle+|2 q\rangle+\cdots+|(p-1) q\rangle)=\frac{1}{\sqrt{p}} \sum_{x=0}^{p-1}|x q\rangle .
$$

Show that $F_{p q}\left|\psi_{1}\right\rangle=\left|\psi_{2}\right\rangle$.
(b) Let $s \in\{0,1, \ldots, p-1\}$, and define $\left|\psi_{3}\right\rangle$ (a "shifted" version of $\left|\psi_{1}\right\rangle$) as

$$
\begin{aligned}
\left|\psi_{3}\right\rangle & =\frac{1}{\sqrt{q}}(|s\rangle+|s+p\rangle+|s+2 p\rangle+\cdots+|s+(q-1) p\rangle) \\
& =\frac{1}{\sqrt{q}} \sum_{x=0}^{q-1}|s+x p\rangle
\end{aligned}
$$

What is $F_{p q}\left|\psi_{3}\right\rangle$? Find a simple expression for this quantity. If $F_{p q}\left|\psi_{3}\right\rangle$ is measured in the computational basis, what is the probability distribution describing the outcome?

4. Some consequences of putting inputs to unitaries in superposition.

(a) Let U be any n-qubit unitary, $\left|\psi_{1}\right\rangle,\left|\psi_{2}\right\rangle$ be orthogonal n-qubit states, and $a_{1}, a_{2} \in$ $\{0,1\}^{n}$ such that the following property holds. For each $j \in\{1,2\}$, if $U\left|\psi_{j}\right\rangle$ is measured in the computational basis then the outcome is a_{j} for sure (i.e., with probability 1). Let α_{1}, α_{2} be such that $\left|\alpha_{1}\right|^{2}+\left|\alpha_{2}\right|^{2}=1$. Does it follow that, if $U\left(\alpha_{1}\left|\psi_{1}\right\rangle+\alpha_{2}\left|\psi_{2}\right\rangle\right)$ is measured in the computational basis, then the outcome is

$$
\begin{cases}a_{1} & \text { with probability }\left|\alpha_{1}\right|^{2} \\ a_{2} & \text { with probability }\left|\alpha_{2}\right|^{2} ?\end{cases}
$$

Either prove it or give a counterexample.
(b) Let U be any n-qubit unitary, $\left|\psi_{1}\right\rangle$ and $\left|\psi_{2}\right\rangle$ be orthogonal n-qubit states, and $a_{1}, b_{1}, a_{2}, b_{2} \in\{0,1\}^{n}$ such that the following property holds. For each $j \in\{1,2\}$, if $U\left|\psi_{j}\right\rangle$ is measured in the computational basis then the outcome is

$$
\begin{cases}a_{j} & \text { with probability } p_{j} \\ b_{j} & \text { with probability } q_{j}\end{cases}
$$

(where $p_{k}+q_{k}=1$). Let α_{1}, α_{2} be such that $\left|\alpha_{1}\right|^{2}+\left|\alpha_{2}\right|^{2}=1$. Does it follow that if $U\left(\alpha_{1}\left|\psi_{1}\right\rangle+\alpha_{2}\left|\psi_{2}\right\rangle\right)$ is measured in the computational basis then the outcome is

$$
\begin{cases}a_{1} & \text { with probability } p_{1}\left|\alpha_{1}\right|^{2} \\ b_{1} & \text { with probability } q_{1}\left|\alpha_{1}\right|^{2} \\ a_{2} & \text { with probability } p_{2}\left|\alpha_{2}\right|^{2} \\ b_{2} & \text { with probability } q_{2}\left|\alpha_{2}\right|^{2}\end{cases}
$$

Either prove it or give a counterexample.
5. More consequences of putting inputs to unitaries in superposition. This question is sort of a continuation of question 4, and pertains to a detail that arose in the quantum algorithm for order-finding that was discussed in class. Let W denote a generalized n-qubit controlled- U gate (i.e., for all $x, y \in\{0,1\}^{n}, W|x\rangle|y\rangle=|x\rangle U^{x}|y\rangle$) and let $\left|\psi_{1}\right\rangle,\left|\psi_{2}\right\rangle$ be two orthogonal eigenvectors of U. Let V be any n-qubit unitary (for order-finding, this was the inverse QFT F^{\dagger}). Also, let $|\phi\rangle$ be any n-qubit state initial state for the control-qubits of W (for order-finding, this was $\frac{1}{2^{n / 2}} \sum_{x}|x\rangle$). Suppose that the following property holds. For each $j \in\{1,2\}$, if the first register (i.e., the first n qubits) of $(V \otimes I) W|\phi\rangle\left|\psi_{j}\right\rangle$ is measured in the computational basis then the outcome is

$$
\left\{\begin{aligned}
a_{j} & \text { with probability } p_{j} \\
b_{j} & \text { with probability } q_{j}
\end{aligned}\right.
$$

(where $p_{k}+q_{k}=1$). Prove that then, if the first register of $(V \otimes I) W|\phi\rangle\left(\alpha_{1}\left|\psi_{1}\right\rangle+\alpha_{2}\left|\psi_{2}\right\rangle\right)$ is measured in the computational basis, the outcome is

$$
\begin{cases}a_{1} & \text { with probability } p_{1}\left|\alpha_{1}\right|^{2} \\ b_{1} & \text { with probability } q_{1}\left|\alpha_{1}\right|^{2} \\ a_{2} & \text { with probability } p_{2}\left|\alpha_{2}\right|^{2} \\ b_{2} & \text { with probability } q_{2}\left|\alpha_{2}\right|^{2}\end{cases}
$$

