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Assignment 2
Due date: October 10, 2013

1. Can a function be evaluated at two places with a single quantum query? Here
we consider the problem where we have a query oracle for a function f : {0, 1} → {0, 1}
and the goal is to obtain information about both f(0) and f(1) with a single query. We
assume that the query oracle is in the usual form of a unitary operator Uf that, for all
a, b ∈ {0, 1}, maps |a, b〉 to |a, b⊕ f(a)〉. For simplicity, we consider methods that employ
only two qubits in all and are expressible by a circuit of the form

|0〉
V Uf W

χ

|0〉 χ

where V and W are two-qubit unitaries and the gates labelled χ are measurements in the
computational basis. Therefore, it can be assumed that the input state to the query is a
two-qubit state of the form α00|00〉+ α01|01〉+ α10|10〉+ α11|11〉, where |α00|2 + |α01|2 +
|α10|2 + |α11|2 = 1.

(a) For each of the four functions of the form f : {0, 1} → {0, 1}, give the quantum state
right after the query has been performed.

(b) If there is a measurement procedure that perfectly distinguishes between the four
states in part (a) then they must be mutually orthogonal. Show that, for a measure-
ment to be able to perfectly determine the value of f(0), it must be the case that
α10 = α11. (Hint: think of the orthogonality relationships that need to hold.)

(c) Show that, if the states are such that f(0) can be determined perfectly from them,
then f(1) cannot be determined with probability better than 1/2 (which is no better
than random guessing). (Hint: You may use the result in part (b) for this.)

(d) Optional for bonus credit: The above analysis is restricted to methods that use
two qubits. Show that, for all m ≥ 2, any strategy that uses m qubits (V and W are
m-qubit unitaries and the query gate Uf acts on the last two qubits) and determines
f(0) perfectly cannot determine f(1) with probability better than 1/2.

2. Classical and quantum algorithms for the OR problem (Part I). In these next
two questions, we consider the problem where we are given a black box for a function
f : {0, 1} → {0, 1} and the goal is to determine f(0) ∨ f(1) (the logical OR of f(0) and
f(1)) with a single query to f .

(a) Give a classical probabilistic algorithm that makes a single query to f and predicts
f(0)∨f(1) with probability 2/3. The probability is respect to the random choices of
the algorithm; the input instance of f is assumed to be arbitrary (worst-case). (Note
that it is not correct to give an algorithm that always outputs 1, and claim that this
succeeds with probability 3/4 because, for three of the four functions, f(0)∨f(1) = 1.
There exists an f for which the success probability of that algorithm is 0.)

It turns out that no classical algorithm can succeed with probability greater than
2/3 (but you are not asked to show this here).
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(b) Give a quantum circuit that, with a single query to f , constructs the two-qubit state

1√
3


(−1)f(0)|00〉+ (−1)f(1)|01〉+ |11〉


.

(Hints: First construct a circuit for 1√
3


(−1)f(0)|00〉+ (−1)f(1)|01〉+ (−1)f(1)|11〉


.

The gate 
1/3


2/3

2/3 −


1/3



and the controlled-Hadamard gate might be helpful for this. Next think about how
to “supress” the phase for |11〉.)

(c) The quantum states of the form in part (b) are three-dimensional and have real-
valued amplitudes. This makes it easy for us to visualize the geometry of these
states (as vectors or lines in R3). Consider the four possible states that can arise
from part (a), depending on which of the four possible functions f is. What is the
absolute value of the inner product between each pair of those four states?

3. Classical and quantum algorithms for the OR problem (Part II).

(a) Based on the results of Part I (question 2), give a quantum algorithm for the OR
problem that makes a single query to f and: succeeds with probability 1 whenever
f(0) ∨ f(1) = 0; succeeds with probability 8/9 whenever f(0) ∨ f(1) = 1.

(b) Note that the error probability of the algorithm from part (a) is one-sided in the
sense that it is always correct in the case where f(0) ∨ f(1) = 0. Give a quantum
algorithm for the OR problem that makes a single query to f and succeeds with
probability 9/10. (Hint: take the output of the one-sided error algorithm from part
(a) and do some classical post-processing on it, in order to turn it into a two-sided
error algorithm with higher success probability.)

4. Determining a hidden “dot product vector”. Consider the problem where one is
given black-box access to a function f : {0, 1}n → {0, 1} such that f(x) = a · x, where
a ∈ {0, 1}n is unknown. (Here a · x = a1x1 + a2x2 + · · ·+ anxn mod 2, the dot product of
a and x in modulo-2 arithmetic.) The goal is to determine the n-bit string a.

(a) Give a classical (i.e., not quantum) algorithm that solves this problem with n queries.

(b) Show that no classical algorithm can solve this problem with fewer than n queries.
(Hint: you may use the fact that a system of k linear equations in n variables cannot
have a unique solution if k < n, even in the setting of modulo-2 arithmetic.)

(c) Here and in part (d) we’ll construct a quantum algorithm that solves this problem
with a single query to f . The first step is to construct the (n + 1)-qubit state
|0〉|0〉 · · · |0〉|1〉 and apply a Hadamard operation to each of the n + 1 qubits. The
second step is to query the oracle for f . What is the state after performing these
two steps?
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(d) Describe a measurement on the state obtained from part (c) whose result is the bits
a1a2 . . . an. (Hint: the state from part (c) is not entangled; it can be expressed as
a tensor product of 1-qubit states, and it might clarify matters if you express it in
such a factorized form.)

5. Constructing a Toffoli gate out of two-qubit gates. The Toffoli gate (controlled-
controlled-NOT) is a 3-qubit gate, and here we show how to implement it with 2-qubit
gates. The construction is given by the following quantum circuit

• • • •

• • ≡ •

V V † V

where

V = 1√
2


ω ω
ω ω


, with ω = eiπ/4 and ω = e−iπ/4 (ω’s conjugate).

We could verify this by multiplying 8× 8 matrices; however, we take a simpler approach.

(a) Show that V 2 = X (this means V is a square root of NOT).

(b) Prove each of the following, where |ψ〉 = α|0〉+ β|1〉 is an arbitrary 1-qubit state:

i. The circuit maps |00〉|ψ〉 maps to |00〉|ψ〉.
ii. The circuit maps |01〉|ψ〉 maps to |01〉|ψ〉.
iii. The circuit maps |10〉|ψ〉 maps to |10〉|ψ〉.
iv. The circuit maps |11〉|ψ〉 maps to |11〉V 2|ψ〉.

(c) Based on parts (a) and (b), write down the 8 × 8 unitary matrix that the above
circuit computes.
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