QIC710/CS678/CO681/PH767/AM871 Introduction to Quantum Information Processing (F13)

Assignment 2

Due date: October 10, 2013

1. Can a function be evaluated at two places with a single quantum query? Here we consider the problem where we have a query oracle for a function $f:\{0,1\} \rightarrow\{0,1\}$ and the goal is to obtain information about both $f(0)$ and $f(1)$ with a single query. We assume that the query oracle is in the usual form of a unitary operator U_{f} that, for all $a, b \in\{0,1\}$, maps $|a, b\rangle$ to $|a, b \oplus f(a)\rangle$. For simplicity, we consider methods that employ only two qubits in all and are expressible by a circuit of the form

where V and W are two-qubit unitaries and the gates labelled χ are measurements in the computational basis. Therefore, it can be assumed that the input state to the query is a two-qubit state of the form $\alpha_{00}|00\rangle+\alpha_{01}|01\rangle+\alpha_{10}|10\rangle+\alpha_{11}|11\rangle$, where $\left|\alpha_{00}\right|^{2}+\left|\alpha_{01}\right|^{2}+$ $\left|\alpha_{10}\right|^{2}+\left|\alpha_{11}\right|^{2}=1$.
(a) For each of the four functions of the form $f:\{0,1\} \rightarrow\{0,1\}$, give the quantum state right after the query has been performed.
(b) If there is a measurement procedure that perfectly distinguishes between the four states in part (a) then they must be mutually orthogonal. Show that, for a measurement to be able to perfectly determine the value of $f(0)$, it must be the case that $\alpha_{10}=\alpha_{11}$. (Hint: think of the orthogonality relationships that need to hold.)
(c) Show that, if the states are such that $f(0)$ can be determined perfectly from them, then $f(1)$ cannot be determined with probability better than $1 / 2$ (which is no better than random guessing). (Hint: You may use the result in part (b) for this.)
(d) Optional for bonus credit: The above analysis is restricted to methods that use two qubits. Show that, for all $m \geq 2$, any strategy that uses m qubits (V and W are m-qubit unitaries and the query gate U_{f} acts on the last two qubits) and determines $f(0)$ perfectly cannot determine $f(1)$ with probability better than $1 / 2$.
2. Classical and quantum algorithms for the OR problem (Part I). In these next two questions, we consider the problem where we are given a black box for a function $f:\{0,1\} \rightarrow\{0,1\}$ and the goal is to determine $f(0) \vee f(1)$ (the logical OR of $f(0)$ and $f(1))$ with a single query to f.
(a) Give a classical probabilistic algorithm that makes a single query to f and predicts $f(0) \vee f(1)$ with probability $2 / 3$. The probability is respect to the random choices of the algorithm; the input instance of f is assumed to be arbitrary (worst-case). (Note that it is not correct to give an algorithm that always outputs 1 , and claim that this succeeds with probability $3 / 4$ because, for three of the four functions, $f(0) \vee f(1)=1$. There exists an f for which the success probability of that algorithm is 0 .)
It turns out that no classical algorithm can succeed with probability greater than $2 / 3$ (but you are not asked to show this here).
(b) Give a quantum circuit that, with a single query to f, constructs the two-qubit state

$$
\frac{1}{\sqrt{3}}\left((-1)^{f(0)}|00\rangle+(-1)^{f(1)}|01\rangle+|11\rangle\right) .
$$

(Hints: First construct a circuit for $\frac{1}{\sqrt{3}}\left((-1)^{f(0)}|00\rangle+(-1)^{f(1)}|01\rangle+(-1)^{f(1)}|11\rangle\right)$. The gate

$$
\left(\begin{array}{rr}
\sqrt{1 / 3} & \sqrt{2 / 3} \\
\sqrt{2 / 3} & -\sqrt{1 / 3}
\end{array}\right)
$$

and the controlled-Hadamard gate might be helpful for this. Next think about how to "supress" the phase for $|11\rangle$.)
(c) The quantum states of the form in part (b) are three-dimensional and have realvalued amplitudes. This makes it easy for us to visualize the geometry of these states (as vectors or lines in \mathbb{R}^{3}). Consider the four possible states that can arise from part (a), depending on which of the four possible functions f is. What is the absolute value of the inner product between each pair of those four states?

3. Classical and quantum algorithms for the OR problem (Part II).

(a) Based on the results of Part I (question 2), give a quantum algorithm for the OR problem that makes a single query to f and: succeeds with probability 1 whenever $f(0) \vee f(1)=0$; succeeds with probability $8 / 9$ whenever $f(0) \vee f(1)=1$.
(b) Note that the error probability of the algorithm from part (a) is one-sided in the sense that it is always correct in the case where $f(0) \vee f(1)=0$. Give a quantum algorithm for the OR problem that makes a single query to f and succeeds with probability $9 / 10$. (Hint: take the output of the one-sided error algorithm from part (a) and do some classical post-processing on it, in order to turn it into a two-sided error algorithm with higher success probability.)
4. Determining a hidden "dot product vector". Consider the problem where one is given black-box access to a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ such that $f(x)=a \cdot x$, where $a \in\{0,1\}^{n}$ is unknown. (Here $a \cdot x=a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n} \bmod 2$, the dot product of a and x in modulo- 2 arithmetic.) The goal is to determine the n-bit string a.
(a) Give a classical (i.e., not quantum) algorithm that solves this problem with n queries.
(b) Show that no classical algorithm can solve this problem with fewer than n queries. (Hint: you may use the fact that a system of k linear equations in n variables cannot have a unique solution if $k<n$, even in the setting of modulo- 2 arithmetic.)
(c) Here and in part (d) we'll construct a quantum algorithm that solves this problem with a single query to f. The first step is to construct the $(n+1)$-qubit state $|0\rangle|0\rangle \cdots|0\rangle|1\rangle$ and apply a Hadamard operation to each of the $n+1$ qubits. The second step is to query the oracle for f. What is the state after performing these two steps?
(d) Describe a measurement on the state obtained from part (c) whose result is the bits $a_{1} a_{2} \ldots a_{n}$. (Hint: the state from part (c) is not entangled; it can be expressed as a tensor product of 1-qubit states, and it might clarify matters if you express it in such a factorized form.)
5. Constructing a Toffoli gate out of two-qubit gates. The Toffoli gate (controlled-controlled-NOT) is a 3-qubit gate, and here we show how to implement it with 2-qubit gates. The construction is given by the following quantum circuit

where

$$
V=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
\omega & \bar{\omega} \\
\bar{\omega} & \omega
\end{array}\right), \quad \text { with } \omega=e^{i \pi / 4} \text { and } \bar{\omega}=e^{-i \pi / 4} \text { (} \omega \text { 's conjugate). }
$$

We could verify this by multiplying 8×8 matrices; however, we take a simpler approach.
(a) Show that $V^{2}=X$ (this means V is a square root of NOT).
(b) Prove each of the following, where $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$ is an arbitrary 1-qubit state:
i. The circuit maps $|00\rangle|\psi\rangle$ maps to $|00\rangle|\psi\rangle$.
ii. The circuit maps $|01\rangle|\psi\rangle$ maps to $|01\rangle|\psi\rangle$.
iii. The circuit maps $|10\rangle|\psi\rangle$ maps to $|10\rangle|\psi\rangle$.
iv. The circuit maps $|11\rangle|\psi\rangle$ maps to $|11\rangle V^{2}|\psi\rangle$.
(c) Based on parts (a) and (b), write down the 8×8 unitary matrix that the above circuit computes.

