QIC710/CS678/CO681/PH767/AM871 Introduction to Quantum Information Processing (F14)

Assignment 1 Due date: September 25, 2014

- 1. **Distinguishing between pairs of quantum states.** In each case, one of the two given states is randomly selected (probability 1/2 each) and given to you. You are not told which one it is. Your goal is to guess which state was selected with as high a probability as you can achieve. Describe your distinguishing procedure as a unitary operation followed by a measurement (in the computational basis) and give its success probability. (Your assigned grade will depend on how close your distinguishing procedure is to optimal.)
 - (a) $|0\rangle$ and $\cos \theta |0\rangle + \sin \theta |1\rangle$ (where $\theta \in [0, \pi/2]$ is known to you, and your answer should be a function of θ)
 - (b) $\frac{1}{\sqrt{2}}(|0\rangle + i|1\rangle)$ and $\frac{1}{\sqrt{2}}(i|0\rangle + |1\rangle)$ (where $i = \sqrt{-1}$)
 - (c) Optional for bonus credit: In this case, there are three states,
 - $|0\rangle \quad \text{and} \quad -\tfrac{1}{2}|0\rangle + \tfrac{\sqrt{3}}{2}|1\rangle \quad \text{and} \quad -\tfrac{1}{2}|0\rangle \tfrac{\sqrt{3}}{2}|1\rangle$

each occurring with probability 1/3, and the goal is to guess which one has been received. Partial bonus credit will be given for a distinguishing procedure that succeeds with probability at least $\frac{2}{3}\cos^2(\pi/12) \approx 0.662$. Full bonus credit will be given for a distinguishing procedure that succeeds with probability 2/3. (Warning: achieving 2/3 is tricky.)

- 2. **Entangled states and product states.** For each two-qubit state below, either express it as a product of two one-qubit states or show that such a factorization is impossible (in the latter case, the qubits are *entangled*).
 - (a) $\frac{1}{2}|00\rangle + \frac{1}{2}i|01\rangle \frac{1}{2}|10\rangle \frac{1}{2}i|11\rangle$
 - (b) $\frac{1}{2}|00\rangle + \frac{1}{2}|01\rangle + \frac{1}{2}|10\rangle \frac{1}{2}|11\rangle$
 - (c) $\frac{9}{25}|00\rangle + \frac{12}{25}|01\rangle + \frac{12}{25}|10\rangle + \frac{16}{25}|11\rangle$
- 3. Operations on part of an entangled quantum state. Let $|\psi\rangle = \frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{2}}|11\rangle$. Prove one of the following three statements.
 - (a) For any 2×2 unitary matrix U, applying U to the first qubit of $|\psi\rangle$ has the same effect as applying U to the second qubit of $|\psi\rangle$.
 - (b) For any 2×2 unitary matrix U, applying U to the first qubit of $|\psi\rangle$ has the same effect as applying U^T to the second qubit of $|\psi\rangle$ (U^T is the transpose of U).
 - (c) For any 2×2 unitary matrix U, applying U to the first qubit of $|\psi\rangle$ has the same effect as applying U^{\dagger} to the second qubit of $|\psi\rangle$ (U^{\dagger} is the conjugate transpose of U).

4. Constructing simple quantum circuits.

(a) Describe a two-qubit quantum circuit consisting of *one* CNOT gate and *two* Hadamard gates that computes the following unitary transformation:

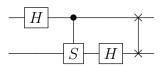
$$\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)$$

(b) Define the one-qubit gates H and S as

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$
 and $S = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}$ (where $i = \sqrt{-1}$).

In each case, give the 4×4 matrix corresponding to the two-qubit controlled gate:

(c) Give the 4×4 matrix corresponding to the following quantum circuit



where S is as defined in part (b), and the last (two-qubit) gate denotes a *swap* gate, that transposes the two qubits (more precisely, a swap gate maps $|00\rangle \mapsto |00\rangle$, $|01\rangle \mapsto |10\rangle$, $|10\rangle \mapsto |01\rangle$, and $|11\rangle \mapsto |11\rangle$).

5. Two-qubit quantum circuit with measurement on first qubit. Consider the circuit

$$|0\rangle$$
 R R M $=$ $|\psi\rangle$ $=$ iZ

where $|\psi\rangle$ is an arbitrary one-qubit state, the gate labeled \mathcal{M} is a measurement,

$$R = \frac{1}{\sqrt{\cos \theta + \sin \theta}} \begin{pmatrix} \sqrt{\cos \theta} & \sqrt{\sin \theta} \\ \sqrt{\sin \theta} & -\sqrt{\cos \theta} \end{pmatrix} \quad \text{and} \quad iZ = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}.$$

- (a) What is the probability that the outcome of the measurement of the first qubit is 0?
- (b) Conditional on the outcome of the measurement of the first qubit being 0, what is the gate applied to the second qubit?

2