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Due date: November 29, 2012

1. The density matrix is in the eye of the beholder. Consider the following scenario.
Alice first flips a biased coin that has outcome 0 with probability cos2(π/8) and 1 with
probability sin2(π/8). If the coin value is 0 she creates the state |0⟩ and if the coin value
is 1 she creates the state |1⟩. Then Alice sends the state that she created to Bob (she
does not send the coin value).

(a) From Alice’s perspective (who knows the coin value), the density matrix of the state

she created will be either |0⟩⟨0| =
(

1 0
0 0

)
or |1⟩⟨1| =

(
0 0
0 1

)
. What is the

density matrix of the state from Bob’s perspective (who does not know the coin
value)? Give the four matrix entries of this denisty matrix.

(b) Suppose that, upon recieving the state from Alice, Bob measures it in the compu-
tational basis. The measurement process yields a classical bit and an output state
(“collapsed” to |0⟩ or |1⟩). Will Bob’s density matrix for the state (with Bob knowing
the classical measurement outcome) be the same as Alice’s?

Suppose that we modify the above scenario to one where Alice flips a fair coin (where
outcomes 0 and 1 each occur with probability 1/2) and if the coin value is 0 she creates
the state |ψ0⟩ = cos(π/8)|0⟩+ sin(π/8)|1⟩ and if the coin value is 1 she creates the state
|ψ1⟩ = cos(π/8)|0⟩ − sin(π/8)|1⟩. Alice sends the state (but not the coin value) to Bob.

(c) From Alice’s perspective (who knows the coin value), the density matrix of the state
she created will be either |ψ0⟩⟨ψ0| or |ψ1⟩⟨ψ1|. What is the density matrix of the
state from Bob’s perspective (who does not know the coin value)? Give the four
matrix entries of this denisty matrix.

(d) Suppose that, upon recieving the state from Alice, Bob measures it in the computa-
tional basis, yielding a classical bit and an output state (“collapsed” to |0⟩ or |1⟩).
Bob knows the classical bit outcome from his measurement, but does not reveal this
to Alice. Will Bob’s density matrix for the output state be the same as Alice’s?

2. Is the transpose a valid quantum operation? Here we consider an operation on
qubits that we denote by Λ, defined as Λ(ρ) = ρT for each density matrix ρ (where ρT is
the transpose of T ).

(a) Give an example of a one-qubit pure state |ψ⟩ such that Λ(|ψ⟩⟨ψ|) is a pure state
orthogonal to |ψ⟩.

(b) Prove that there is no unitary operation U such that Λ(ρ) = UρU † for all ρ.

(c) Optional for bonus credit. Part (b) does not rule out the possibility that there
is a general quantum operation (that is, a mapping of the form ρ 7→

∑m
k=1AkρA

†
k,

where
∑m

k=1A
†
kAk = I) that corresponds to Λ. Show that there is no such operation.
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3. Trace distance between pure states.

(a) Calculate an expression for the trace distance between |0⟩ and cos(θ)|0⟩ + sin(θ)|1⟩
as a function of θ.

(b) Calculate an expression for the Euclidean distance between the two points in the
Bloch sphere that correspond to the pure states |0⟩ and cos(θ)|0⟩+ sin(θ)|1⟩.

4. Secret key encryption. Recall the classical one-time pad encryption scheme restricted
to a single bit. The scenario is that Alice wants to send a bit of information to Bob
over a channel that is possibly being monitored by Eve (an eavesdropper). We assume
that Alice and Bob share a secret key, which was set up in advance. The secret key
is a randomly chosen (uniformly distributed) k ∈ {0, 1}, which is known by Alice and
Bob, but—importantly—not by Eve. If Alice wants to send a bit m to Bob then Alice
computes c = m ⊕ k and sends c over the channel. When Bob receives c, he computes
m′ = c ⊕ k. It is easy to show that m′ = m and Eve acquires no information about m
from looking at c. We now consider a similar scenario, but where Alice wants to send a
qubit |ψ⟩ to Bob over a quantum channel that is possibly being monitored by Eve. How
can this be accomplished so that if Eve performs a measurement on the data that goes
through the channel, she cannot acquire any information about what |ψ⟩ was?
(a) If Alice and Bob share a classical secret key bit k ∈ {0, 1}, then one approach would

be for Alice to send Xk|ψ⟩ to Bob. This seems analogous to the classical protocol:
Alice either flips or doesn’t flip the (qu)bit according to a random key bit. Show that
this is highly insecure by giving two quantum states |ψ0⟩ and |ψ1⟩ whose encryptions
Eve can perfectly distinguish between.

(b) Suppose that Alice and Bob have two (independently generated) key bits k1, k2, and
Alice encrypts |ψ⟩ Zk1Xk2|ψ⟩. (Note that Bob can decrypt this since he has k1 and
k2.) Show that this is perfectly secure in the sense that, for any two quantum states
|ψ0⟩ and |ψ1⟩, Eve cannot distinguish at all between their encryptions.

5. A nonlocal game. Consider the game where Alice and Bob are physically separated
and their goal is to produce outputs that satisfy the winning conditions specified below.
Alice and Bob receive s, t ∈ {0, 1, 2} as input (s to Alice and t to Bob), at which point
they are forbidden from communicating with each other (so Alice has no idea what t is
and Bob has no idea what s is). They each output a bit, a for Alice and b for Bob. The
winning conditions are:

• a = b in the cases where s = t.

• a ̸= b in the cases where s ̸= t.

(a) Show that any classical strategy (that uses no quantum information) of Alice and
Bob that always succeeds in the s = t cases can succeed with probability at most
2/3 in the s ̸= t cases.

(b) Give a quantum strategy (that is, one where Alice and Bob can create an entangled
state before the game starts and then base their outcomes on their measurements of
their parts of this state) that always succeeds in the s = t cases and succeeds with
probability 3/4 in the s ̸= t cases. (Hint: try the entangled state 1√

2
|00⟩ − 1√

2
|11⟩

and have Alice and Bob perform rotations depending on s and t respectively.)
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