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1. Some consequences of putting inputs to unitaries in superposition.

(a)

Let U be any n-qubit unitary, |11), |¢2) be orthogonal n-qubit states, and ay, as €
{0,1}" such that the following property holds. For each j € {1,2}, if U|y;) is
measured in the computational basis then the outcome is a; for sure (i.e., with
probability 1). Let ay,as be such that |a;]? + |ag|?> = 1. Does it follow that, if
U(aq 1) + aslths)) is measured in the computational basis, then the outcome is

a; with probability |a |?
as with probability |as|*?

Either prove it or give a counterexample.

Let U be any n-qubit unitary, |¢;) and [|¢5) be orthogonal n-qubit states, and
ay, by, az, by € {0,1}" such that the following property holds. For each j € {1,2}, if
Ul1;) is measured in the computational basis then the outcome is

a; with probability p;
b; with probability g;

(where py, + qr = 1). Let ay, ap be such that o |* + |az|* = 1. Does it follow that if
U(a1|tr) + azlthe)) is measured in the computational basis then the outcome is

a; with probability pi|a;|?
by with probability g |ay|*
as with probability ps|as|?
b, with probability ga|as|?.

Either prove it or give a counterexample.

2. More consequences of putting inputs to unitaries in superposition. This ques-
tion is sort of a continuation of question 1, and pertains to a detail that arose in the
quantum algorithm for order-finding that was discussed in class. Let W denote a gen-
eralized n-qubit controlled-U gate (i.e., for all z,y € {0,1}", W|x)|y) = |z)U*|y)) and
let |11), |t2) be two orthogonal eigenvectors of U. Let V' be any n-qubit unitary (for
order-finding, this was the inverse QFT FT). Also, let |¢) be any n-qubit state initial
state for the control-qubits of W (for order-finding, this was 55 > |z)). Suppose that
the following property holds. For each j € {1,2}, if the first register (i.e., the first n
qubits) of (V @ I)W|¢)|1;) is measured in the computational basis then the outcome is

a; with probability p;
b; with probability g;



(where pr +qr = 1). Prove that then, if the first register of (V@ I)W|@)(aq|1)1) + ae|tha))
is measured in the computational basis, the outcome is

a; with probability p;|aq|?
by with probability ¢;|ay|*
as with probability ps|as|?
by with probability ga|asl?.

3. Classical reversible computations and invertibility. There is an efficient classical
algorithm for multiplying two integers, and we can implement this in terms a circuit
consisting of reversible gates. Since everything implementable in terms of reversible gates
can be inverted by just running the circuit backwards (inverting each gate and placing
them in a backwards order), it would seem that we can efficiently invert multiplication by
a classical circuit. Does this imply that there is an efficient classical algorithm that, given
a product of two large primes, computes the factors efficiently? (This would mean that
we don’t need Shor’s algorithm to factor.) The answer can be obtained by investigating
precise definitions.

Let f:{0,1}" — {0,1}" be an invertible (i.e., bijective) function. We define two ways of
computing f. The first way, which we call the input-preserving computation of f, is where
for each z,y € {0,1}", |z)|y) is mapped to |z)|y & f(x)). We allow additional qubits to
be used in the computation as long as they are all initialized in state |0) and are reset
to state |0) by the end of the computation (so the computation might be |z)|y)|0™) —
|z)|ly® f(x))]|0™)). We call the second way of computing f the input-erasing computation
of f, and this is where for each x € {0,1}", |z) is mapped to |f(z)). (Again, with extra
qubits, the actual compuytation can be |z)[0™) — |f(z))[0™).)

(a) Given an efficient circuit (say, of size polynomial in n) consisting of reverible gates
that computes f in an input-preserving manner, then we can reverse this circuit by
inverting each gate of the circuit and putting the gates in reverse order. Does doing
this yield an efficient circuit that computes f~! in an input-preserving manner?
Explain your answer.

(b) Show that if both f and f~! can be computed in an input-preserving manner then
f can be computed in an input-erasing manner.

(c) Show that if f can be computed in an input-erasing manner than f~! can be com-
puted in an input-preserving manner.

4. Basic questions about density matrices.

(a) A density matrix p corresponds to a pure state if and only if p = |1)(y)|. Show that
p corresponds to a pure state if and only if Tr(p?) = 1.

(b) Show that, for any operator that is Hermitian, positive definite (i.e., has no negative
eigenvalues), and has trace 1, there is a probabilistic mixture of pure states whose
denisty matrix is p.



(c) Show that every 2 x 2 density matrix p can be expressed as an equally weighted
mizture of pure states. That is

p = 31Un) (V1] + 5[¥2) (¥a
for states |¢1) and |1)9) (note that, in general, the two states will not be orthogonal).

5. Operations, states and the Bloch sphere. Consider the unitary matrices of the form

cos 6 sin 6
My = ( sinf —cos@ >

where 6 € [0, 27).

(a) Prove that, for any value of 0, My is a reflection. In other words, that the eigenvalues
of My are from {41, —1}. (Note: there is a very easy way of doing this.)

(b) Prove that, on the Bloch sphere, My acts as a rotation (for any value of ).
Give the axis of rotation and angle of rotation.

(c) Specity four one-qubit quantum states |¢o), |1), |¢2), |¢3), such that, for all j # k,
|(¢j]pr)| < r, for as small an r as possible. Note that, using states |0), 1), |+), |—),

achieves 7 = 1/4/2, but a smaller r is achievable. You may specify the states by
their density matrices; however, you should explicitly give the value of r obtained.



