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1. Quantum Fourier transform. Let Fm denote the m-dimensional Fourier transform

Fm =
1√
m
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1 ωm−1 ω2(m−1) · · · ω(m−1)2

 , where ω = e2πi/m (i =
√
−1)

(an m×m matrix, whose entry in position jk is 1√
m
(e2πi/m)jk for j, k ∈ {0, 1, . . . ,m−1}).

(a) As a warm-up exercise, show that, for all j ∈ {1, 2, . . . ,m−1},
∑m−1

k=0 ωjk = 0.

(b) Show that any two rows of Fm are orthonormal.

(c) What is (Fm)
2? The matrix has a very simple form.

2. A version of Simon’s problem modulo m (quantum part of the algorithm). Let
m be some n-bit number (2n−1 < m < 2n) and assume that we are given a black box
computing f : Zm×Zm → Zm that is promised to have the property: f(a1, a2) = f(b1, b2)
if and only if (a1, a2) − (b1, b2) ∈ S, where S = {k(r, 1) : k ∈ Zm} for some unknown
r ∈ Zm. Let the goal be to compute r.

Also, assume that we have a good implementation of Fm, the quantum Fourier transform
modulo m, and its inverse F †

m. (Technically, Fm can be defined in a qubit setting as an
n-qubit unitary operation, where on the basis states that are out of range, namely |a⟩
with a ∈ {m, . . . , 2n − 1}, some other arbitrary unitary operation is applied.)

In class, we considered a quantum algorithm that proceeds as follows.

1. Initialize three quantum Zm-registers, each to state |0⟩.
2. Apply Fm to the first and second register.

3. Compute f (with inputs from registers 1 and 2 and output added to register 3).

4. Apply F †
m to the first and second register.

5. Measure the first and second register (and ignore the third register).

Let the two outcome values of the measurement be (s1, s2) ∈ Zm × Zm. Begin by con-
vincing yourself that the state of the system just after step 3 is completed is

1

m

m−1∑
x1=0

m−1∑
x2=0

|x1⟩|x2⟩|f(x1, x2)⟩.

In this question, we will show that, after step 5 is completed, for each (s1, s2) ∈ Zm×Zm,

Prob[ outcome is (s1, s2)] =

{
1
m

if (s1, s2) · (r, 1) = 0
0 if (s1, s2) · (r, 1) ̸= 0.

(1)
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(a) For each a ∈ Zm, define Sa = S + (a, 0) (meaning that (a, 0) is added to every
element of S, modulo m). Prove that S0, S1, . . . , Sm−1 form a partition of Zm×Zm,
in the sense that:

i. For all a ̸= b, Sa ∩ Sb = ∅
ii. S0 ∪ S1 ∪ · · · ∪ Sm−1 = Zm×Zm.

(b) Prove that f(x1, x2) = f(y1, y2) if and only if (x1, x2) and (y1, y2) are in the same
element of the above partition (in other words, (x1, x2), (y1, y2) ∈ Sa, for some a).

(c) Prove that Equation (1) holds. (Hint: you may use the results of parts (a) and (b).)

3. A version of Simon’s problem modulo m (classical post-processing part of the
algorithm).

Once we obtain the outcome of the measurement in the procedure for Simon’s algorithm
modm, we still need to compute r. Assume from Question 2 that we obtain (s1, s2) satisfy-
ing Equation (1). In class we saw that r can be computed whenever gcd(s1,m) = 1. Here
we address the question of showing that the probability that s1 satisfies gcd(s1,m) = 1
is not too small, resulting in overall polynomial efficiency.

(a) Show that, whatever the value of r is, s1 is uniformly distributed over the set Zm.

(b) Euler’s totient function ϕ(m) is defined as the size of the set of all numbers in
{1, 2, . . . ,m − 1} that are relatively prime to m (that is, whose gcd with respect
to m is 1). It is known that ϕ(m) ≥ cm/ log log(m) for some constant c (let us
assume this fact for this question). Explain why this (and the result in part (a))
implies that the probability that gcd(s1,m) = 1 is at least a constant times 1/ log(n)
(where n is the number of bits of m). If gcd(s1,m) ̸= 1, the algorithm described
in Question 2 can be run again, yielding a fresh pair (s1, s2); what is the expected
number of repetitions required until gcd(s1,m) = 1 will occur?

(Note: there is an even more efficient approach than re-running the algorithm whenever
gcd(s1,m) ̸= 1, but we omit this here.)

4. Determining the leading coefficient of a “linear” function. Let m be any integer
greater than 1. Consider the problem where one is given black-box access to a function
f : Zm → Zm such that f(x) = ax + b (arithmetic modulo m), for unknown parameters
a, b ∈ Zm, and the goal is to determine the coefficient a. The reversible form of the black
box is: (x, y) 7→ (x, y + f(x)) (addition modulo m).

(a) Show that there is a classical algorithm solving this problem with 2 queries, and that
2 queries are required classically.

(b) Show that there is a quantum algorithm that solves this problem with 1 query to
the reversible black box for f . (Hint: you may use the quantum Fourier transform
Fm and/or F †

m and consider setting the target register to the state F †
m|1⟩.)
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5. Distinguishing states by local measurements. In this question, we suppose Alice
and Bob (who are physically separated from each other, say, in separate labs) are each
given one of the qubits of some two-qubit state. Working as a team, they are required to
distinguish between State I and State II with only local measurements. We will take this to
mean that they can each perform a one-qubit unitary operation and then a measurement
(in the computational basis) on their own qubit. After their measurements, they can send
only classical bits to each other.

In each case below, either give a perfect distinguishing procedure (that never errs) or
explain why there is no perfect distinguishing procedure (i.e., that for any procedure the
success probability must be less than 1).

(a) State I: 1√
2
(|00⟩+ |11⟩)

State II: 1√
2
(|01⟩+ |10⟩)

(b) State I: 1√
2
(|00⟩+ |11⟩)

State II: 1√
2
(|00⟩ − |11⟩)

(c) State I: 1√
2
(|00⟩+ i|11⟩) (i =

√
−1)

State II: 1√
2
(|00⟩+ |11⟩)

6. Optional Bonus Question: leading coefficient of a “quadratic” function.

This is just like question 4, except f(x) = ax2+bx+c (arithmetic modulom), for unknown
parameters a, b, c ∈ Zm, and the goal is to determine the coefficient a. Unlike question 4,
assume that m is prime and m > 2.

(a) Show that there is a classical algorithm solving this problem with 3 queries, and that
3 queries are required classically.

(b) Show that there is a quantum algorithm that solves this problem with 2 queries to
the reversible black box for f .

(c) Extra challenge: show that this problem cannot be solved with 1 quantum query.
(Warning: this is meant to be a significant challenge; don’t get bogged down by this
question.)

3


