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1. On distinguishing between an identical pair and an orthogonal pair of qubits.
Let α, β be any complex numbers such that |α|2 + |β|2 = 1. Consider the state distin-
guishing problem where we are given two qubits whose joint state is either

(α|0⟩+ β|1⟩)⊗ (α|0⟩+ β|1⟩) or (α|0⟩+ β|1⟩)⊗ (β̄|0⟩ − ᾱ|1⟩)

and our goal is to determine which case we are in. Call the cases “same” and “orthogonal”
(noting that α|0⟩+β|1⟩ and β̄|0⟩−ᾱ|1⟩ are orthogonal). The key complication here is that:
we are given absolutely no information about α and β, not even a probability distribution
from which they arise. Our approach must succeed with probabiity 1

2
+ ε whatever α and

β are and whatever case we are in.

We will use the Bell basis (which is an orthonormal basis): |ϕ+⟩ = 1√
2
(|00⟩ + |11⟩),

|ϕ−⟩ = 1√
2
(|00⟩ − |11⟩), |ψ+⟩ = 1√

2
(|01⟩+ |10⟩), |ψ−⟩ = 1√

2
(|01⟩ − |10⟩).

(a) Show that, in the case “same”, the state is in the subspace spanned by the first three
Bell states: |ϕ+⟩, |ϕ−⟩, and |ψ+⟩.

(b) Show that, in the case “orthogonal”, there exists a constant δ (where δ is independent
of what α and β are) such that the absolute value of the inner product of the state
with |ψ−⟩ is δ. Also, indicate what δ is.

(c) Based on your answers in (a) and (b), give a distinguishing procedure that, whatever
case and whatever α and β are, will correctly identify the case with probability 1

2
+ε,

for some positive constant ε as large as possible.

2. Operations, states and the Bloch sphere. Consider the unitary matrices of the form

Mθ =

(
cos θ sin θ
sin θ − cos θ

)
where θ ∈ [0, 2π).

(a) Prove that, for any value of θ,Mθ is a reflection. In other words, that the eigenvalues
of Mθ are from {+1,−1}. (Note: there is a very easy way of doing this.)

(b) Prove that, on the Bloch sphere, Mθ acts as a rotation (for any value of θ). Give
the axis of rotation and angle of rotation.

(c) Specify four one-qubit quantum states |ϕ0⟩, |ϕ1⟩, |ϕ2⟩, |ϕ3⟩, such that, for all j ̸= k,
|⟨ϕj|ϕk⟩| ≤ r, for as small an r as possible. Note that, using states |0⟩, |1⟩, |+⟩, |−⟩,
achieves r = 1/

√
2, but a smaller r is achievable. You may specify the states by

their density matrices; however, you should explicitly give the value of r obtained.

3. Unitary that always maps every state to an orthogonal state? Is there a one-qubit
unitary operation that maps each pure state |ψ⟩ to some state |ψ′⟩ such that ⟨ψ|ψ′⟩ = 0?
If so, specify the unitary operation. If not, prove that no such unitary operation exists.
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4. Constructing an AND gate as a quantum operation. Here we consider operations
that map the two-qubit state |a, b⟩ to the one-qubit state |a ∧ b⟩, for all a, b ∈ {0, 1}.
Of course, no unitary operation can perform this mapping, since the input and output
dimension do not match; however, general quantum operations can compute this mapping.

(a) Give four 2× 4 matrices A1, A2, A3, A4 such that
∑4

j=1A
†
jAj = I that compute the

above mapping in that, for all a, b ∈ {0, 1}, when ρ = |a, b⟩⟨a, b|,

4∑
j=1

AjρA
†
j = |a ∧ b⟩⟨a ∧ b|.

(b) Your operation from part (a) maps all basis states to pure states. Does it map all
pure input states to pure output states? Either prove the answer is yes, or provide
a counterexample.

(c) Here we implement the mapping in the Stinespring form, using additional qubits at
the beginning, performing a unitary operation, and then tracing out qubits. Consider
this three-step process (where the input is any two-qubit quantum state):

i. Append a third qubit in state |0⟩ to the end of the two input qubits.

ii. Apply a 3-qubit unitary operation U .

iii. Trace out the second and third qubit (resulting in a single qubit, taken as the
output).

Describe a 3-qubit unitary U that causes this process to implement the mapping
above (that is, to map |a, b⟩ to |a ∧ b⟩, for all a, b ∈ {0, 1}).

5. General conversion from Stinespring form to Krauss form. Suppose that you are
given a description of a quantum operation that takes an n-qubit state ρ as input and
produces an n′-qubit state σ as output, where the description is of the following form
(where n+m = n′ +m′):

i. Append an m qubits, in state |0m⟩ to the end of the input state.
ii. Apply an (n+m)-qubit unitary operation U .
iii. Trace out the first m′ qubits (resulting in an n′-qubit output).

Show how to implement this in Krauss form as

ρ 7→
∑
j∈S

AjρA
†
j,

where
∑

j∈S A
†
jAj = I. Please be careful with the dimensions of your matrices/vectors

(so that they make sense). Also, to avoid ambiguity between multiplication and tensor
product, write ⊗ explicitly to denote the latter (I will assume that AB means the matrix
product of A and B, as opposed to A⊗B).
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