
QIC710/CS667/CO681/PH767/AM871 Introduction to Quantum Information Processing (F11)

Assignment 5
This can be submitted up until December 22

1. Amplitude amplification. Consider a generalization of the search problem where, we
are given a black box computing f : {0, 1}n → {0, 1}, and the goal is to find x0 ∈ {0, 1}n
such that f(x0) = 1 (for simplicity, throughout this question, we assume this x0 is unique).
Suppose that we are given another black box computing an n-qubit “guessing” unitary
operation W that helps guess a satisfying assignment to f in the following sense. The
property of W is formally that 〈x0|W |0n〉 = √

p, for some number p ∈ [0, 1]. This means
that applying W to state |0n〉 and then measuring in the computational basis results in
x0 with probability p. We could build a search algorithm based on this W that operates
as follows: repeatedly use W to guess a value of x and for each guess make a query to f
to determine if f(x) = 1. On average, the number of queries to f until x0 is found is 1/p
times. This search algorithm is more efficient than Grover’s in cases were we happen to
have a W with p ≫ 1

2n
.

(a) Show that the n-qubit Hadamard transform is always a guessing unitary with pa-
rameter p = 1/2n.

(b) Show that −WU0W
†Uf applies a rotation by angle 2 sin−1(

√
p) in the two dimen-

sional space spanned by |x0〉 and W |0n〉. Here, as in Grover’s algorithm, Uf is the
unitary that maps |x〉 to (−1)f(x)|x〉, and U0 is the unitary that maps |x〉 to!

−|x〉 if x = 0n

|x〉 if x ∕= 0n.
(1)

(Hint: use the property of two reflections being a rotation.)

(c) Deduce from part (b) that x0 can be found with constant probability using only
O(

"
1/p) queries to Uf , W , and W †.

2. Two noisy channels. Consider these two noise models for a one-qubit channel. The
first channel performs #

$$%

$$&

I with probability 1− p
X with probability p/3
Y with probability p/3
Z with probability p/3

(2)

and the second channel leaves its qubit intact with probability 1−q and replaces its qubit
with one in state 1

2
|0〉〈0| + 1

2
|1〉〈1| with probability q. Show that, for all q ∈ [0, 1], there

is a value of p ∈ [0, 1] for which the first channel is equivalent to the second one. Give an
expression for p as a function of q.
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3. Correcting errors at known positions. Here we consider error correcting codes in
scenarios where, after the qubits have been transmitted, the location of the possible error
is known (but not the error itself). Consider the 4-qubit quantum error correcting Code
A, which uses basis codewords |c0〉 = 1√

2
(|0000〉+ |1111〉) and |c1〉 = 1√

2
(|0011〉+ |1100〉).

A qubit α|0〉+ β|1〉 is encoded as α|c0〉+ β|c1〉. It is easy to construct a quantum circuit
that performs this encoding, but we are more interested in the error-correcting capabilities
of this code. This code does not protect against an arbitrary one-qubit error as the 9-
qubit Shor code does. However, if, after the transmission of the codeword, we are given
k ∈ {1, 2, 3, 4} which is the location of the (potential) error but not the error itself then
it is possible to correct it. For example, if k = 3 then we can assume that we received a
state of the form (I ⊗ I ⊗ U ⊗ I)(α|c0〉+ β|c1〉) but we don’t know what U (the error on
qubit 3) is. Our goal is to recover α|c0〉+ β|c1〉 from this.

(a) Show how Code A (described above) protects against I and X errors of known
location. In other words, along with the four qubits, we are given k ∈ {1, 2, 3, 4}
and either I or X has been applied to the kth qubit received (but we don’t know
which one). Show how to undo the error in this scenario. By the symmetry of |c0〉
and |c1〉, you may simply show how to undo the error in the case where k = 4; the
other three cases would be very similar to explain.

(b) Consider Code B, whose basis codewords are |c′0〉 = H⊗4|c0〉 and |c′1〉 = H⊗4|c1〉. A
qubit α|0〉+ β|1〉 is encoded as α|c′0〉+ β|c′1〉.
i. Give explicit expressions for |c′0〉 and |c′1〉.
ii. Show how Code B protects against I and X errors (in the same sense that Code

A does in part (a)).

(c) Show how Code A protects against I, X, Z, and XZ errors of known location. (Hint:
make use of the results established in parts (a) and (b).)

(d) Show how Code A protects against any one-qubit unitary U error of known location.
You may use the results from parts (a), (b) and (c) here.

4. Secret key encryption. Recall the classical one-time pad encryption scheme restricted
to a single bit. The scenario is that Alice wants to send a bit of information to Bob
over a channel that is possibly being monitored by Eve (an eavesdropper). We assume
that Alice and Bob share a secret key, which was set up in advance. The secret key
is a randomly chosen (uniformly distributed) k ∈ {0, 1}n, which is known by Alice and
Bob, but—importantly—not by Eve. If Alice wants to send a bit m to Bob then Alice
computes c = m ⊕ k and sends c over the channel. When Bob receives c, he computes
m′ = c ⊕ k. It is easy to show that m′ = m and Eve acquires no information about m
from looking at c. We now consider a similar scenario, but where Alice wants to send a
qubit |ψ〉 to Bob over a quantum channel that is possibly being monitored by Eve. How
can this be accomplished so that if Eve performs operations (including measurements) on
the data that goes through the channel, she cannot acquire any information about what
|ψ〉 was?
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(a) If Alice and Bob share a classical secret key bit k ∈ {0, 1}, then one approach would
be for Alice to send Xk|ψ〉 to Bob. This seems analogous to the classical protocol:
Alice either flips or doesn’t flip the (qu)bit according to a random key bit. Show that
this is highly insecure by giving two quantum states |ψ0〉 and |ψ1〉 whose encryptions
Eve can perfectly distinguish between.

(b) Suppose that Alice and Bob have two (independently generated) key bits k1, k2, and
Alice encrypts |ψ〉 Zk1Xk2 |ψ〉. (Note that Bob can decrypt this since he has k1 and
k2.) Show that this is perfectly secure in the sense that, for any two quantum states
|ψ0〉 and |ψ1〉, Eve cannot distinguish at all between their encryptions.

5. A nonlocal game. Consider the following game where Alice and Bob are physically
separated and their goal is to produce outputs that satisfy the winning conditions specified
below. Alice and Bob receive s, t ∈ {0, 1, 2} as input (s to Alice and t to Bob), at which
point they are forbidden from communicating with each other (so Alice has no idea what
t is and Bob has no idea what s is). They each output a bit, a for Alice and b for Bob.
The winning conditions are:

• a = b in the cases where s = t.

• a ∕= b in the cases where s ∕= t.

(a) Show that any classical strategy (one that uses no quantum information anywhere)
of Alie and Bob that always succeeds in the s = t cases can succeed with probability
at most 2/3 in the s ∕= t cases.

(b) Give a quantum strategy (that is, one where Alice and Bob can create an entangled
state before the game starts and then base their outcomes on their measurements of
their parts of this state) that always succeeds in the s = t cases and succeeds with
probability 3/4 in the s ∕= t cases. (Hint: try the entangled state 1√

2
|00〉 − 1√

2
|11〉

and have Alice and Bob perform rotations depending on s and t respectively.)
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