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Due date: December 3, 2009

1. Trace distance between pure states.

(a) Calculate an expression for the trace distance between |0〉 and cos(θ)|0〉 + sin(θ)|1〉
as a function of θ.

(b) Calculate an expression for the Euclidean distance between the two points in the
Bloch sphere that correspond to the pure states |0〉 and cos(θ)|0〉+ sin(θ)|1〉.

2. Amplitude amplification. Consider a generalization of the search problem where, we
are given a black box computing f : {0, 1}n → {0, 1}, and the goal is to find x0 ∈ {0, 1}n

such that f(x0) = 1 (for simplicity let us suppose here that x0 is unique). Suppose
that we are given another black box computing an n-qubit “guessing” unitary operation
UG that helps guess a satisfying assignment to f . The property of UG is formally that
〈x0|UG|0n〉 =

√
p, for some number p ∈ [0, 1], which is interpreted as follows. Applying

UG to the initial state |0n〉 and measuring in the computational basis results in x0 with
probability p. We would expect to repeat this process O(1/p) times until x0 is found,
resulting in O(1/p) queries to both the black box for f and the black box for UG.

(a) Show that the n-qubit Hadamard transform is always a guessing unitary with pa-
rameter p = 1/2n.

(b) There are cases where better guessing unitaries exist than the Hadamard, with
1/2n ¿ p ¿ 1. Show that −UGU0U

†
GUf applies a rotation by angle 2 sin−1(

√
p)

in the two dimensional space spanned by |x0〉 and UG|0n〉. Here, as in Grover’s al-
gorithm, Uf is the unitary that maps |x〉 to (−1)f(x)|x〉, and U0 is the unitary that
maps |x〉 to { −|x〉 if x = 0n

|x〉 if x 6= 0n.
(1)

(Hint: use the property of two reflections being a rotation.)

(c) Deduce from part (b) that x0 can be found with probability at least 3/4 (say) using
only O(

√
1/p) queries to Uf , UG, and U †

G.

3. Two noisy channels. Consider these two noise models for a one-qubit channel. The
first channel performs 




I with probability 1− p
X with probability p/3
Y with probability p/3
Z with probability p/3

(2)

and the second channel leaves its qubit intact with probability 1−q and replaces its qubit
with one in state 1

2
|0〉〈0| + 1

2
|1〉〈1| with probability q. Show that, for all q ∈ [0, 1], there

is a value of p ∈ [0, 1] for which the first channel is equivalent to the second one.
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4. Sets of nearly orthogonal states. Since a d-dimensional space can have at most d
mutually orthogonal (non-zero) vectors, the number of qubits required to accommodate
2n orthogonal states is n. What happens if we relax the orthogonality condition to one of
ε-nearly orthogonal, meaning that the absolute value of the inner product between any two
states is at most ε (rather than zero)? How many qubits are required to accommodate 2n

ε-nearly orthogonal states? We’ll show that O(log(n/ε)) qubits suffice (in other words,
there are exponentially more ε-nearly orthogonal states than orthogonal states in any
given finite dimension).

Let ε > 0 be an arbitrarily small constant. Set q to any prime number between n/ε and
2n/ε. First, for each x ∈ {0, 1}n, define the polynomial px as

px(t) = x0 + x1t + x2t
2 + · · ·+ xn−1t

n−1 mod p. (3)

Now, for each x ∈ {0, 1}n, define the state |ψx〉 as

|ψx〉 =
1√
q

q−1∑
t=0

|t〉|px(t)〉. (4)

(a) Explain why each |ψx〉 is a 2 log(2n/ε)-qubit state.

(b) Show that these 2n states are pairwise ε-nearly orthogonal in the sense that, for all
x 6= y, |〈ψx|ψy〉| ≤ ε.

5. A nonlocal game. Consider the following game. Alice and Bob receive s, t ∈ {0, 1, 2}
as input (s to Alice and t to Bob), at which point they are forbidden from communicating
with each other. They each output a bit, a for Alice and b for Bob. The winning conditions
are:

• a = b in the cases where s = t.

• a 6= b in the cases where s 6= t.

(a) Show that any classical strategy that always succeeds in the s = t cases can succeed
with probability at most 2/3 in the s 6= t cases.

(b) Give a quantum strategy (that is, one where Alice and Bob can base their outcomes
on their measurement of an entangled state) that always succeeds in the s = t cases
and succeeds with probability 3/4 in the s 6= t cases. (Hint: try the entangled state
1√
2
|00〉 − 1√

2
|11〉 and have Alice and Bob perform rotations depending on s and t

respectively.)
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