CS667/CO681/PH767/AM871 Quantum Information Processing (Fall 09)

Assignment 5

Due date: December 3, 2009

1. Trace distance between pure states.

(a) Calculate an expression for the trace distance between $|0\rangle$ and $\cos (\theta)|0\rangle+\sin (\theta)|1\rangle$ as a function of θ.
(b) Calculate an expression for the Euclidean distance between the two points in the Bloch sphere that correspond to the pure states $|0\rangle$ and $\cos (\theta)|0\rangle+\sin (\theta)|1\rangle$.
2. Amplitude amplification. Consider a generalization of the search problem where, we are given a black box computing $f:\{0,1\}^{n} \rightarrow\{0,1\}$, and the goal is to find $x_{0} \in\{0,1\}^{n}$ such that $f\left(x_{0}\right)=1$ (for simplicity let us suppose here that x_{0} is unique). Suppose that we are given another black box computing an n-qubit "guessing" unitary operation U_{G} that helps guess a satisfying assignment to f. The property of U_{G} is formally that $\left\langle x_{0}\right| U_{G}\left|0^{n}\right\rangle=\sqrt{p}$, for some number $p \in[0,1]$, which is interpreted as follows. Applying U_{G} to the initial state $\left|0^{n}\right\rangle$ and measuring in the computational basis results in x_{0} with probability p. We would expect to repeat this process $O(1 / p)$ times until x_{0} is found, resulting in $O(1 / p)$ queries to both the black box for f and the black box for U_{G}.
(a) Show that the n-qubit Hadamard transform is always a guessing unitary with parameter $p=1 / 2^{n}$.
(b) There are cases where better guessing unitaries exist than the Hadamard, with $1 / 2^{n} \ll p \ll 1$. Show that $-U_{G} U_{0} U_{G}^{\dagger} U_{f}$ applies a rotation by angle $2 \sin ^{-1}(\sqrt{p})$ in the two dimensional space spanned by $\left|x_{0}\right\rangle$ and $U_{G}\left|0^{n}\right\rangle$. Here, as in Grover's algorithm, U_{f} is the unitary that maps $|x\rangle$ to $(-1)^{f(x)}|x\rangle$, and U_{0} is the unitary that maps $|x\rangle$ to

$$
\left\{\begin{align*}
-|x\rangle & \text { if } x=0^{n} \tag{1}\\
|x\rangle & \text { if } x \neq 0^{n} .
\end{align*}\right.
$$

(Hint: use the property of two reflections being a rotation.)
(c) Deduce from part (b) that x_{0} can be found with probability at least $3 / 4$ (say) using only $O(\sqrt{1 / p})$ queries to U_{f}, U_{G}, and U_{G}^{\dagger}.
3. Two noisy channels. Consider these two noise models for a one-qubit channel. The first channel performs

$$
\begin{cases}I & \text { with probability } 1-p \tag{2}\\ X & \text { with probability } p / 3 \\ Y & \text { with probability } p / 3 \\ Z & \text { with probability } p / 3\end{cases}
$$

and the second channel leaves its qubit intact with probability $1-q$ and replaces its qubit with one in state $\frac{1}{2}|0\rangle\langle 0|+\frac{1}{2}|1\rangle\langle 1|$ with probability q. Show that, for all $q \in[0,1]$, there is a value of $p \in[0,1]$ for which the first channel is equivalent to the second one.
4. Sets of nearly orthogonal states. Since a d-dimensional space can have at most d mutually orthogonal (non-zero) vectors, the number of qubits required to accommodate 2^{n} orthogonal states is n. What happens if we relax the orthogonality condition to one of ε-nearly orthogonal, meaning that the absolute value of the inner product between any two states is at most ε (rather than zero)? How many qubits are required to accommodate 2^{n} ε-nearly orthogonal states? We'll show that $O(\log (n / \varepsilon))$ qubits suffice (in other words, there are exponentially more ε-nearly orthogonal states than orthogonal states in any given finite dimension).
Let $\varepsilon>0$ be an arbitrarily small constant. Set q to any prime number between n / ε and $2 n / \varepsilon$. First, for each $x \in\{0,1\}^{n}$, define the polynomial p_{x} as

$$
\begin{equation*}
p_{x}(t)=x_{0}+x_{1} t+x_{2} t^{2}+\cdots+x_{n-1} t^{n-1} \bmod p \tag{3}
\end{equation*}
$$

Now, for each $x \in\{0,1\}^{n}$, define the state $\left|\psi_{x}\right\rangle$ as

$$
\begin{equation*}
\left|\psi_{x}\right\rangle=\frac{1}{\sqrt{q}} \sum_{t=0}^{q-1}|t\rangle\left|p_{x}(t)\right\rangle . \tag{4}
\end{equation*}
$$

(a) Explain why each $\left|\psi_{x}\right\rangle$ is a $2 \log (2 n / \varepsilon)$-qubit state.
(b) Show that these 2^{n} states are pairwise ε-nearly orthogonal in the sense that, for all $x \neq y,\left|\left\langle\psi_{x} \mid \psi_{y}\right\rangle\right| \leq \varepsilon$.
5. A nonlocal game. Consider the following game. Alice and Bob receive $s, t \in\{0,1,2\}$ as input (s to Alice and t to Bob), at which point they are forbidden from communicating with each other. They each output a bit, a for Alice and b for Bob. The winning conditions are:

- $a=b$ in the cases where $s=t$.
- $a \neq b$ in the cases where $s \neq t$.
(a) Show that any classical strategy that always succeeds in the $s=t$ cases can succeed with probability at most $2 / 3$ in the $s \neq t$ cases.
(b) Give a quantum strategy (that is, one where Alice and Bob can base their outcomes on their measurement of an entangled state) that always succeeds in the $s=t$ cases and succeeds with probability $3 / 4$ in the $s \neq t$ cases. (Hint: try the entangled state $\frac{1}{\sqrt{2}}|00\rangle-\frac{1}{\sqrt{2}}|11\rangle$ and have Alice and Bob perform rotations depending on s and t respectively.)

