
CS667/CO681/PH767/AM871 Quantum Information Processing (Fall 09)

Assignment 3

Due date: October 27, 2009

1. Simon’s problem modulo p. Let p be some large prime number and assume that we
are given a black box computing f : Zp×Zp → Zp that is promised to have the following
property. There exists (r1, r2) ∈ Zp × Zp such that (r1, r2) 6= (0, 0) and f(a1, a2) =
f(b1, b2) if and only if (a1, a2) − (b1, b2) is a multiple of (r1, r2) (the multiples of (r1, r2)
are {k(r1, r2) : k ∈ Zp}).
Also, assume that we have a good implementation of Fp, the quantum Fourier transform
modulo p, and its inverse (Fp)

†. Technically, Fp can be defined in a qubit setting as an
n-qubit unitary operation where 2n−1 < p ≤ 2n. On the basis states that are out of range
(|a〉 with a ∈ {p, . . . , 2n − 1}) some other arbitrary unitary operation is applied. For any
state in range, Fp is applied to it.

Describe a quantum algorithm that determines (r1, r2) with high probability after only
two queries to f .

2. Distinguishing states by local measurements. In this question, we suppose Alice
and Bob (who are physically separated from each other, say, in separate labs) are each
given one of the qubits of some two-qubit state. Working as a team, they are required
to distinguish between State A and State B with only local measurements. We will
take this to mean that they can each perform a one-qubit unitary operation and then a
measurement (in the computational basis) on their own qubit. After their measurements,
they can send only classical bits to each other. In each case below, either give a perfect
distinguishing procedure (that never errs) or explain why there is no perfect distinguishing
procedure (i.e., that for any procedure the success probability must be less than 1).

(a) State A: 1√
2
(|00〉+ |11〉)

State B: 1√
2
(|01〉+ |10〉)

(b) State A: |00〉
State B: 1√

2
(|00〉+ |11〉)

(c) State A: 1√
2
(|00〉+ |11〉)

State B: 1√
2
(|00〉 − |11〉)

3. Approximating unitary transformations. There are frequent situations where it is
much easier to approximate a unitary transformation than to compute it exactly. For a

vector v = (v0, . . . , vm−1), let ||v|| =
√∑m−1

j=0 |vj|2, which is the usual Euclidean length

of v. For an arbitrary m×m matrix M , define its norm ||M || as

||M || = max
|ψ〉

||M |ψ〉||,

where the maximum is taken over quantum states (i.e., vectors |ψ〉 such that |||ψ〉|| = 1).
We can now define the distance between to m×m unitary matrices U1 and U2 as ||U1−U2||.
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(a) Show that if ||U1 − U2|| ≤ ε then, for any quantum state |ψ〉, ||U1|ψ〉 − U2|ψ〉|| ≤ ε.

(b) Show that ||A − B|| ≤ ||A − C|| + ||C − B||, for any three m ×m matrices A, B,
and C. (Thus, this distance measure satisfies the triangle inequality.)

(c) Show that ||A⊗ I|| = ||A|| for any m×m matrix A and the l× l identity matrix I.

(d) Show that ||U1AU2|| = ||A||, for any m ×m matrix A and any two m ×m unitary
matrices U1 and U2.

4. Approximate quantum Fourier transform modulo 2n. Recall that in class we saw
how to compute the QFT modulo 2n by a quantum circuit of size O(n2). Here, we
consider how to compute an approximation of this QFT within ε by a quantum circuit of
size O(n log(n/ε)).

(a) Recall that the O(n2) size QFT quantum circuit uses gates of the form

Pk =




1 0 0 0
0 1 0 0
0 0 1 0

0 0 0 e2πi/2k


 ,

for values of k that range between 2 and n. Show that ||Pk − I|| ≤ 2π/2k, where I
is the 4× 4 identity matrix. (Thus, Pk gets very close to I when k increases.)

(b) The idea behind the approximate QFT circuit is to start with the O(n2) circuit and
then remove some of its Pk gates. Removing a Pk gate is equivalent to replacing it
with an I gate. Removing a Pk gate makes the circuit smaller but it also changes the
unitary transformation. From part (a) and the general properties of our measure of
distance between unitary transformations in the previous question, we can deduce
that if k is large enough then removing a Pk gate changes the unitary transformation
by only a small amount. Show how to use this approach to obtain a quantum circuit
of size O(n log(n/ε)) that computes a unitary transformation F̃2n such that

||F̃2n − F2n || ≤ ε.

(Hint: Try removing all Pk gates where k ≥ t, for some carefully chosen threshold t.
The properties of our distance measure from the previous question should be useful
for your analysis here.)

5. Classical and quantum algorithms for the AND problem. Recall that, for Deutsch’s
problem, there is a function f : {0, 1} → {0, 1} and the goal is to determine f(0)⊕ f(1)
with a single query to f . There is no classical algorithm that succeeds with probability
more than 1/2, whereas there is a quantum algorithm that succeeds with probability 1.
This question pertains to a variation of Deutsch’s problem, which we’ll call the AND
problem, where the goal is to determine f(0)∧ f(1) with a single query to f . (∧ denotes
the logical AND operation.)
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(a) Consider how well a classical algorithm can predict f(0) ∧ f(1) with a single query
to f : {0, 1} → {0, 1}. Give a classical probabilistic algorithm that makes a single
query to f and predicts f(0) ∧ f(1) with probability at least 2/3. (The probability
is respect to the random choices of the algorithm; the input instance of f is assumed
to be arbitrary.)

It turns out that no classical algorithm can succeed with probability greater than
2/3 (but you are not asked to show this here).

(b) Give a quantum circuit that, with a single query to f , constructs the two-qubit state

1√
3

(
(−1)f(0)|00〉+ (−1)f(1)|01〉+ |11〉) .

(c) The quantum states of the form in part (a) are three-dimensional and have real-
valued amplitudes. This makes it easy for us to visualize the geometry of these
states (as vectors or lines in R3). Consider the four possible states that can arise
from part (a), depending on which of the four possible functions f is. What is the
absolute value of the inner product between each pair of those four states?

(d) Based on parts (b) and (c), give a quantum algorithm for the AND problem that
makes a single query to f and: succeeds with probability 1 whenever f(0)∧f(1) = 1;
succeeds with probability 8/9 whenever f(0) ∧ f(1) = 0.

(e) Note that the error probability of the algorithm from part (d) is one-sided in the
sense that it is always correct in the case where f(0) ∧ f(1) = 1. Give a quantum
algorithm for the AND problem that makes a single query to f and succeeds with
probability 9/10. (Hint: take the output of the one-sided error algorithm from part
(d) and do some classical post-processing on it, in order to turn it into a two-sided
error algorithm with higher success probability.)

6. Optional bonus question: leading coefficients of quadratic polynomials. Con-
sider the problem where one is given black-box access to a function f : {0, 1, 2} → {0, 1, 2}
such that f(x) = ax2 + bx + c (arithmetic here is modulo 3), where a, b, c ∈ {0, 1, 2} are
unknown coefficients. The goal is to determine the coefficient a.

(a) Show that any classical algorithm for this problem must make 3 queries.

(b) Give a quantum algorithm for this problem that makes only 2 queries.
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