
CS667/CO681/PH767/AM871 Quantum Information Processing (Fall 09)

Assignment 3

Due date: October 27, 2009

1. Distinguishing states by local measurements. In this question, we suppose Alice
and Bob (who are physically separated from each other, say, in separate labs) are each
given one of the qubits of some two-qubit state. Working as a team, they are required
to distinguish between State A and State B with only local measurements. We will
take this to mean that they can each perform a one-qubit unitary operation and then a
measurement (in the computational basis) on their own qubit. After their measurements,
they can send only classical bits to each other. In each case below, either give a perfect
distinguishing procedure (that never errs) or explain why there is no perfect distinguishing
procedure (i.e., that for any procedure the success probability must be less than 1).

(a) State A: 1√
2
(|00〉+ |11〉)

State B: 1√
2
(|01〉+ |10〉)

(b) State A: |00〉
State B: 1√

2
(|00〉+ |11〉)

(c) State A: 1√
2
(|00〉+ |11〉)

State B: 1√
2
(|00〉 − |11〉)

2.

3. Approximating unitary transformations. There are frequent situations where it is
much easier to approximate a unitary transformation than to compute it exactly. For a

vector v = (v0, . . . , vm−1), let ||v|| =
√∑m−1

j=0 |vj|2, which is the usual Euclidean length

of v. For an arbitrary m×m matrix M , define its norm ||M || as

||M || = max
|ψ〉

||M |ψ〉||,

where the maximum is taken over quantum states (i.e., vectors |ψ〉 such that |||ψ〉|| = 1).
We can now define the distance between to m×m unitary matrices U1 and U2 as ||U1−U2||.
(a) Show that if ||U1 − U2|| ≤ ε then, for any quantum state |ψ〉, ||U1|ψ〉 − U2|ψ〉|| ≤ ε.

(b) Show that ||A − B|| ≤ ||A − C|| + ||C − B||, for any three m ×m matrices A, B,
and C. (Thus, this distance measure satisfies the triangle inequality.)

(c) Show that ||A⊗ I|| = ||A|| for any m×m matrix A and the l× l identity matrix I.

(d) Show that ||U1AU2|| = ||A||, for any m ×m matrix A and any two m ×m unitary
matrices U1 and U2.

4. Approximate quantum Fourier transform modulo 2n. Recall that in class we saw
how to compute the QFT modulo 2n by a quantum circuit of size O(n2). Here, we
consider how to compute an approximation of this QFT within ε by a quantum circuit of
size O(n log(n/ε)).
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(a) Recall that the O(n2) size QFT quantum circuit uses gates of the form

Pk =




1 0 0 0
0 1 0 0
0 0 1 0

0 0 0 e2πi/2k


 ,

for values of k that range between 2 and n. Show that ||Pk − I|| ≤ 2π/2k, where I
is the 4× 4 identity matrix. (Thus, Pk gets very close to I when k increases.)

(b) The idea behind the approximate QFT circuit is to start with the O(n2) circuit and
then remove some of its Pk gates. Removing a Pk gate is equivalent to replacing it
with an I gate. Removing a Pk gate makes the circuit smaller but it also changes the
unitary transformation. From part (a) and the general properties of our measure of
distance between unitary transformations in the previous question, we can deduce
that if k is large enough then removing a Pk gate changes the unitary transformation
by only a small amount. Show how to use this approach to obtain a quantum circuit
of size O(n log(n/ε)) that computes a unitary transformation F̃2n such that

||F̃2n − F2n || ≤ ε.

(Hint: Try removing all Pk gates where k ≥ t, for some carefully chosen threshold t.
The properties of our distance measure from the previous question should be useful
for your analysis here.)

5. Distinguishing between two families of states. Consider the following two sets of
n-qubit states: set A consists of just the state

1√
2

n

∑

x∈{0,1}n

|x〉 (1)

and set B consists of all states of the form

1√
2

n

∑

x∈{0,1}n

(−1)f(x)|x〉, (2)

where f : {0, 1}n → {0, 1} is a balanced function (that is,
∑

x∈{0,1}n f(x) = 2n−1).

Each state in B is orthogonal to the state in A, so in principle the two sets of states can
be distinguished perfectly. Show explicitly how to distinguish between the two sets by
describing a an n-qubit unitary operation U in terms of a circuit consisting of 1-qubit gates
and/or 2-qubit gates with the following property: U maps the state in A to |00 . . . 0〉 and
U maps every state in B to some state that is orthogonal to |00 . . . 0〉. Include a proof that
your U has this property. (Note that, with this U , the distinguishing procedure becomes
easy: given a state |ψ〉, apply U and measure the result in the computational basis; if the
result is 00 . . . 0 then |ψ〉 ∈ A, otherwise |ψ〉 ∈ B.)

6. Determining a hidden “dot product vector”. Consider the problem where one is
given black-box access to a function f : {0, 1}n → {0, 1} such that f(x) = a · x, where
a ∈ {0, 1}n is unknown. (Here a · x = a1x1 + a2x2 + · · ·+ anxn mod 2, the dot product of
a and x in modulo-2 arithmetic.) The goal is to determine the n-bit string a.
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(a) Give a classical algorithm that solves this problem with n queries.

(b) Show that no classical algorithm can solve this problem with fewer than n queries.
(Hint: you may use the fact that a system of k linear equations in n variables cannot
have a unique solution if k < n, even in the setting of modulo-2 arithmetic.)

(c) Here and in part (d) we’ll construct a quantum algorithm that solves this problem
with a single query to f . The first step is to construct the (n + 1)-qubit state
|0〉|0〉 · · · |0〉|1〉 and apply a Hadamard operation to each of the n + 1 qubits. The
second step is to query the oracle for f . What is the state after performing these
two steps?

(d) Describe a measurement on the state obtained from part (c) whose result is the bits
a1a2 . . . an. (Hint: the state from part (c) is not entangled; it can be expressed as
a tensor product of 1-qubit states, and it might clarify matters if you express it in
such a factorized form.)

7. Entanglement among three qubits. Suppose that Alice, Bob and Carol each possess
a qubit and that the joint state of their three qubits is |ψ〉 = 1√

2
(|000〉+ |111〉).

(a) Suppose that Carol leaves the scene, taking her qubit with her, and without commu-
nicating with either Alice or Bob. Consider the two-qubit state of Alice and Bob’s
qubits. Is this state equivalent to 1√

2
(|00〉+ |11〉)? Justify your answer.

(b) Suppose that Carol leaves the scene, again taking her qubit with her, but she is al-
lowed to send one classical bit to Alice. Carol wants to help Alice and Bob transform
their state into the state 1√

2
(|00〉+ |11〉) (and without Alice and Bob having to send

any messages between each other). The framework is as follows:

i. Carol applies some unitary operation U to her qubit, and then measures the
qubit, yielding the classical bit b.

ii. Carol sends just the classical bit b to Alice.

iii. Alice applies a unitary operation, depending on b, to her qubit. In other words,
Alice has two unitary operations V0 and V1, and she applies Vb to her qubit.

At the end of this procedure, the two-qubit state of state of Alice and Bob’s qubits
should be 1√

2
(|00〉+ |11〉). Explain how to make this procedure work.

(c) Is it possible for Alice, Bob and Carol to each possess a qubit such that the joint
state of the three qubits has both of the following properties at the same time?

Property 1: The two-qubit state of Alice and Bob’s qubits is 1√
2
(|00〉+ |11〉).

Property 2: The two-qubit state of Bob and Carol’s qubits is 1√
2
(|00〉+ |11〉).

Either give an example of a three-qubit state with these properties or show that such
a state does not exist.
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8. Quantum Fourier transform. Let FN denote the N -dimensional Fourier transform

FN =
1√
N




1 1 1 · · · 1
1 ω ω2 · · · ωN−1

1 ω2 ω4 · · · ω2(N−1)

...
...

...
. . .

...

1 ωN−1 ω2(N−1) · · · ω(N−1)2




, where ω = e2πi/N (i =
√−1)

(an N×N matrix, whose entry in position jk is 1√
N

(e2πi/N)jk for j, k ∈ {0, 1, . . . , N−1}).

(a) Show that any two rows of FN are orthonormal.

(b) What is (FN)2? The matrix has a very simple form.

9. A qubit cannot be used communicate more than one bit. Suppose that Alice
wants to convey a trit of information (an element of {0, 1, 2}) to Bob and all she is al-
lowed to do is prepare one qubit and send it to Bob. If Bob’s measurement procedure
is to apply a 1-qubit unitary operation and then apply a standard measurement then it
is clear that this cannot work, because the measurement has only two outcomes. But
this type of argument does not rule out the possibility that, with a more complex kind
of measurement on Bob’s side, they might be able to do it: Bob could prepare n − 1
additional qubits, each in state |0〉, and apply an n-qubit unitary operation to the entire
n qubit system and then perform a standard measurement.

input

U

ED

BC

x1

|0〉 x2

...
...

|0〉 xn

7→ f(x1, x2, . . . , xn) ∈ {0, 1, 2}

Bob’s more complex measurement of a qubit

The outcome will be an element of {0, 1}n. It is conceivable that Bob could somehow
determine the trit from these n bits. We shall prove that this is impossible.

The framework is that Alice starts with a trit j ∈ {0, 1, 2} (unknown to Bob) and, based
on j, prepares a one-qubit state, αj|0〉 + βj|1〉, and sends it to Bob. Then Bob applies
some n-qubit unitary U to (αj|0〉 + βj|1〉)|00 . . . 0〉 and does a standard measurement to
the resulting state, obtaining some x ∈ {0, 1}n as outcome. Next, Bob then applies a
function f : {0, 1}n → {0, 1, 2} to x to obtain a trit. The scheme works if and only if,
starting with any j ∈ {0, 1, 2}, the resulting x will satisfy f(x) = j.

(a) Note that each row of the matrix U is a 2n-dimensional vector. For j ∈ {0, 1, 2},
define the space Vj to be the span of all rows of U that are indexed by an element of
the set f−1(j) ⊆ {0, 1}n. Prove that V0, V1, and V2 are mutually orthogonal spaces.

(b) Explain why, for a scheme to work, (αj|0〉 + βj|1〉)|00 . . . 0〉 ∈ Vj must hold for all
j ∈ {0, 1, 2}.

(c) Prove that it is impossible for (αj|0〉+βj|1〉)|00 . . . 0〉 ∈ Vj to hold for all j ∈ {0, 1, 2}.
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The contradiction between parts (b) and (c) imply that no scheme can work. It is straight-
forward to extend this proof to show that, for any r > 2m, Alice cannot convey one of r
possibilities by just sending m qubits to Bob (you are not asked to do this here).
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