CS667/C0O681/PH767/AM871 Quantum Information Processing (Fall 09)
Assignment 2
Due date: October 13, 2009

1. Distinguishing between two families of states. Consider the following two sets of
n-qubit states: set A consists of just the state

Y ) (1)

z€{0,1}"

and set B consists of all states of the form

L Y (), (2)

z€{0,1}"

where f:{0,1}" — {0, 1} is a balanced function (that is, 3 (o 1y. f(z) = 2"7).

Each state in B is orthogonal to the state in A, so in principle the two sets of states can
be distinguished perfectly. Show explicitly how to distinguish between the two sets by
describing a an n-qubit unitary operation U in terms of a circuit consisting of 1-qubit gates
and/or 2-qubit gates with the following property: U maps the state in A to |00...0) and
U maps every state in B to some state that is orthogonal to |00...0). Include a proof that
your U has this property. (Note that, with this U, the distinguishing procedure becomes
easy: given a state |1), apply U and measure the result in the computational basis; if the
result is 00...0 then |¢) € A, otherwise |¢) € B.)

2. Determining a hidden “dot product vector”. Consider the problem where one is
given black-box access to a function f : {0,1}" — {0,1} such that f(x) = a -z, where
a € {0,1}" is unknown. (Here a -z = a2y + asxs + - - - + a2, mod 2, the dot product of
a and x in modulo-2 arithmetic.) The goal is to determine the n-bit string a.

(a) Give a classical algorithm that solves this problem with n queries.

(b) Show that no classical algorithm can solve this problem with fewer than n queries.
(Hint: you may use the fact that a system of k linear equations in n variables cannot
have a unique solution if k < n, even in the setting of modulo-2 arithmetic.)

(c¢) Here and in part (d) we’ll construct a quantum algorithm that solves this problem
with a single query to f. The first step is to construct the (n + 1)-qubit state
|0)|0) - --|0)|1) and apply a Hadamard operation to each of the n + 1 qubits. The
second step is to query the oracle for f. What is the state after performing these
two steps?

(d) Describe a measurement on the state obtained from part (c¢) whose result is the bits
ajas . ..a,. (Hint: the state from part (c) is not entangled; it can be expressed as
a tensor product of 1-qubit states, and it might clarify matters if you express it in
such a factorized form.)



3. Entanglement among three qubits. Suppose that Alice, Bob and Carol each possess
a qubit and that the joint state of their three qubits is |[¢)) = \%(|000> + [111)).

(a) Suppose that Carol leaves the scene, taking her qubit with her, and without commu-
nicating with either Alice or Bob. Consider the two-qubit state of Alice and Bob’s
qubits. Is this state equivalent to (|00> +[11))? Justify your answer.

(b) Suppose that Carol leaves the scene, again taking her qubit with her, but she is al-
lowed to send one classical bit to Alice. Carol wants to help Alice and Bob transform
their state into the state —= (|00) +|11)) (and without Alice and Bob having to send

any messages between each other). The framework is as follows:

i. Carol applies some unitary operation U to her qubit, and then measures the
qubit, yielding the classical bit b.
ii. Carol sends just the classical bit b to Alice.
iii. Alice applies a unitary operation, depending on b, to her qubit. In other words,
Alice has two unitary operations V4 and Vi, and she applies V} to her qubit.

At the end of this procedure, the two-qubit state of state of Alice and Bob’s qubits
should be (|()0> + |11)). Explain how to make this procedure work.

(c) Is it possible for Alice, Bob and Carol to each possess a qubit such that the joint
state of the three qubits has both of the following properties at the same time?

Property 1: The two-qubit state of Alice and Bob’s qubits is —= (\00> +(11)).
Property 2: The two-qubit state of Bob and Carol’s qubits is (]00) + [11)).

Either give an example of a three-qubit state with these properties or show that such
a state does not exist.

4. Quantum Fourier transform. Let F) denote the N-dimensional Fourier transform
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(an N x N matrix, whose entry in position jk is \/LN (e2™/NYik for j k€ {0,1,...,N—1}).

(a) Show that any two rows of Fiy are orthonormal.

(b) What is (Fy)?? The matrix has a very simple form.

5. A qubit cannot be used communicate more than one bit. Suppose that Alice
wants to convey a trit of information (an element of {0,1,2}) to Bob and all she is al-
lowed to do is prepare one qubit and send it to Bob. If Bob’s measurement procedure
is to apply a 1-qubit unitary operation and then apply a standard measurement then it
is clear that this cannot work, because the measurement has only two outcomes. But



this type of argument does not rule out the possibility that, with a more complex kind
of measurement on Bob’s side, they might be able to do it: Bob could prepare n — 1
additional qubits, each in state |0), and apply an n-qubit unitary operation to the entire
n qubit system and then perform a standard measurement.

input — ) — f(x1,29,...,2,) €{0,1,2}
0) — T2
!‘> -
0) — Tn

Bob’s more complex measurement of a qubit

The outcome will be an element of {0,1}". It is conceivable that Bob could somehow
determine the trit from these n bits. We shall prove that this is impossible.

The framework is that Alice starts with a trit j € {0,1,2} (unknown to Bob) and, based
on j, prepares a one-qubit state, a;|0) + G;|1), and sends it to Bob. Then Bob applies
some n-qubit unitary U to (a;]0) 4+ 5;]1))|00...0) and does a standard measurement to
the resulting state, obtaining some x € {0,1}" as outcome. Next, Bob then applies a
function f : {0,1}" — {0,1,2} to = to obtain a trit. The scheme works if and only if,
starting with any j € {0, 1,2}, the resulting = will satisfy f(x) = j.

(a) Note that each row of the matrix U is a 2"-dimensional vector. For j € {0,1,2},
define the space V; to be the span of all rows of U that are indexed by an element of
the set f~!(j) € {0,1}". Prove that Vj, V4, and V, are mutually orthogonal spaces.

(b) Explain why, for a scheme to work, (o;|0) 4+ 5;/1))|00...0) € V; must hold for all
j €{0,1,2}.

(c) Prove that it is impossible for (a;]0)+/5;/1))|00...0) € V; to hold for all j € {0, 1, 2}.
The contradiction between parts (b) and (c) imply that no scheme can work. It is straight-

forward to extend this proof to show that, for any r > 2™, Alice cannot convey one of r
possibilities by just sending m qubits to Bob (you are not asked to do this here).



