
QIC710/CS768/CO681/PH767/AM871 Introduction to Quantum Information Processing (F19)

Assignment 3
Due date: October 24, 2019

1. Quantum Fourier transform modulo 3n on n qutrits [10 points]. Assume that you
have n qutrit registers (with computational basis {|0〉, |1〉, |2〉}). Give a circuit consisting
of O(n2) one- and two-qutrit gates that computes F3n , the Fourier transform modulo 3n.
Explain why it works.

2. Interpolating a linear function with a single quantum query [10 points, 5 each].
Let p be prime and f : Zp → Zp be a function of the form f(x) = ax + b mod p, where
a, b ∈ Zp are unknown coefficients, and your goal is to determine the coefficient a with as
few queries to f as possible (you do not have to determine coefficient b).

(a) Suppose that you are given a black-box that reversibly computes f as (x, y) →
(x, y + f(x) mod p), for all x, y ∈ Zp. Show that two classical queries are necessary
to deduce a.

(b) Suppose that you are given a black-box unitary that reversibly computes f as
|x〉|y〉 → |x〉|y + f(x) mod p〉, for all x, y ∈ Zp. Show that one quantum query
is sufficient to deduce a. (Hint: you may use the quantum Fourier transform Fp

and/or F †
p .)

3. Distinguishing states by local measurements [12 points, 3 each]. In this question,
we suppose Alice and Bob (who are physically separated from each other, say, in separate
labs) are each given one of the qubits of some two-qubit state. Working as a team, they
are required to distinguish between State I and State II with only local measurements.
We will take this to mean that they can each perform a one-qubit unitary operation
and then a measurement (in the computational basis) on their own qubit. After their
measurements, they can send only classical bits to each other.

In each case below, either give a perfect distinguishing procedure (that never errs) or
explain why there is no perfect distinguishing procedure (i.e., that for any procedure the
success probability must be less than 1).

(a) State I: 1√
2
(|00〉+ |11〉)

State II: 1√
2
(|01〉+ |10〉)

(b) State I: 1√
2
(|00〉+ |11〉)

State II: 1√
2
(|00〉 − |11〉)

(c) State I: 1√
2
(|00〉+ i|11〉) (i =

√
−1)

State II: 1√
2
(|00〉+ |11〉)

(d) State I: 1√
2
(|00〉+ i|11〉)

State II: 1√
2
(|00〉 − i|11〉)
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4. Period-finding algorithm in an idealized setting [16 points]. Suppose thatm = pq,
where p and q are n-bit primes. Define f : Zm → Zm to be a strictly p-periodic if it has
the property that f(x) = f(y) if and only if x− y is a multiple of p.

Assume we are given m but not its factorization, and our goal is to efficiently deter-
mine p. Suppose that we have an efficient implementation of m-dimensional registers
and also the unitary Uf for some strictly p-periodic f : Zm → Zm, where Uf |x〉|y〉 =
|x〉|y + f(x) mod m〉 (for all x, y ∈ Zm). In addition, suppose that we have an efficient
implementation of Fm, the quantum Fourier transform modulo m. We will show how to
efficiently determine p. The first step is to apply Fm and Uf once to construct the state

Uf (Fm ⊗ I)|0〉|0〉 = 1√
m



x∈Zm

|x〉|f(x)〉. (1)

(a) [2 points] Explain why, if the second register of the above state is measured, then
the state of the first register is of the form

|ψs〉 =
1
√
q


|s〉 + |s+ p〉+ |s+ 2p〉+ · · ·+ |s+ (q − 1)p〉


=

1
√
q

q−1

x=0

|s+ xp〉 (2)

for some s ∈ Zp.

(b) [5] Show that, if Fm is applied to the state

|ψ0〉 =
1
√
q


|0〉 + |p〉+ |2p〉+ · · ·+ |(q − 1)p〉


=

1
√
q

q−1

x=0

|xp〉 (3)

then the result is

Fm|ψ0〉 =
1
√
p


|0〉+ |q〉+ |2q〉+ · · ·+ |(p− 1)q〉


=

1
√
p

p−1

x=0

|xq〉. (4)

(c) [5] In part (b), we have an expression for Fm|ψ0〉. What is Fm|ψs〉, for an arbitrary
s ∈ Zp? (Hint: expressed in the computational basis, the amplitudes have the same
absolute value as those for Fm|ψ0〉.)

(d) [4] Suppose that Fm|ψs〉 is measured in the computational basis, yielding result z.
For the case where z ∕= 0, explain how to efficiently compute the periodicity p
from z. You can assume that there is an efficient algorithm for computing the
greatest common divisor of two integers, which can be called as a subroutine.
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5. Entanglement among three qubits [12 points, 4 each]. Suppose that Alice, Bob
and Carol each possess a qubit and that the joint state of their three qubits is |ψ〉 =
1√
2
(|000〉+ |111〉).

(a) Suppose that Carol leaves the scene, taking her qubit with her, and without commu-
nicating with either Alice or Bob. Consider the two-qubit state of Alice and Bob’s
qubits. Is this state equivalent to 1√

2
(|00〉+ |11〉)? Justify your answer.

(b) Suppose again that Carol leaves the scene, taking her qubit with her, but she is al-
lowed to send one classical bit to Alice. Carol wants to help Alice and Bob transform
their state into the state 1√

2
(|00〉+ |11〉) (and without Alice and Bob having to send

any messages between each other). The framework is as follows:

i. Carol applies some unitary operation U to her qubit, and then measures the
qubit, yielding the classical bit b.

ii. Carol sends just the classical bit b to Alice.

iii. Alice applies a unitary operation, depending on b, to her qubit. In other words,
Alice has two unitary operations V0 and V1, and she applies Vb to her qubit.

At the end of this procedure, the two-qubit state of state of Alice and Bob’s qubits
should be 1√

2
(|00〉+ |11〉). Explain how to make this procedure work.

(c) Is it possible for Alice, Bob and Carol to each possess a qubit such that the joint
state of the three qubits has both of the following properties at the same time?

Property 1: The two-qubit state of Alice and Bob’s qubits is 1√
2
(|00〉+ |11〉).

Property 2: The two-qubit state of Bob and Carol’s qubits is 1√
2
(|00〉+ |11〉).

Either give an example of a three-qubit state with these properties or show that such
a state does not exist.
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