Solutions to Sample Assignment A

$\mathbf{1}$ (a) What is the most general form of a strategy for this game? For each input received (0 or 1), there can be some probability distribution for the resulting guess. However, in the case of input 1 guessing I is never correct. Therefore, no generality is lost if we restrict our attention to strategies of this form (for some parameter $\epsilon \in[0,1]$):

Strategy B (ϵ)
if the bit received is 0 then randomly guess $\begin{cases}\text { I } & \text { with probability } 1-\epsilon \\ \text { II } & \text { with probability } \epsilon\end{cases}$
if the bit received is 1 then guess II
(Any strategy that is not of this form can be improved by changing it to always guess II in the case of input 1.)
For set-up I, this strategy succeeds with probability $1-\epsilon$. For set-up II, this strategy succeeds with probability $\frac{1}{2}+\frac{1}{2} \epsilon$. Therefore, the average-case success probability of strategy $\mathrm{B}(\epsilon)$ is the average of these two success probabilities

$$
\begin{align*}
\frac{1}{2}(1-\epsilon)+\frac{1}{2}\left(\frac{1}{2}+\frac{1}{2} \epsilon\right) & =\frac{3}{4}-\frac{1}{2} \epsilon+\frac{1}{4} \epsilon \tag{1}\\
& =\frac{3}{4}-\frac{1}{4} \epsilon . \tag{2}
\end{align*}
$$

This is maximized when $\epsilon=0$. Therefore, strategy $\mathrm{B}(0)$, which is the same as strategy A , achieves optimum average-case success probability.

Note: In the context of average-case success probability, we need only consider the four deterministic strategies and check that strategy A is the best among these. This is a consequence of a general result that's sometimes referred to as "Yao's Lemma". A solution along these lines would need to include a clear statement or reference to that lemma (omitted here). It should be noted that there is no such lemma for worst-case success probability; in fact, in part (b) the optimal strategy is not deterministic.
$\mathbf{1 (b)}$ The highest possible worst-case success probability is $\frac{2}{3}$ (higher than what strategy A attains). To see why this is so, we refer to the strategies of the form $\mathrm{B}(\epsilon)$ that we defined in part (a) (without loss of generality, we need only consider strategies of the form $\mathrm{B}(\epsilon)$). The worst-case success probability of $\mathrm{B}(\epsilon)$ is the minimum of the success probabilities of the two cases, which is

$$
\begin{equation*}
\min \left\{1-\epsilon, \frac{1}{2}+\frac{1}{2} \epsilon\right\} . \tag{3}
\end{equation*}
$$

For what value of parameter ϵ is this maximized? Since $1-\epsilon$ decreases as a function of ϵ and $\frac{1}{2}+\frac{1}{2} \epsilon$ increases as a function of ϵ, the expression is maximized at the value of ϵ where the expressions are equal

$$
\begin{equation*}
1-\epsilon=\frac{1}{2}+\frac{1}{2} \epsilon, \tag{4}
\end{equation*}
$$

which occurs when $\epsilon=\frac{1}{3}$. Therefore, worst-case success probability is maximized by strategy $B\left(\frac{1}{3}\right)$ and is $\frac{2}{3}$.
2. If the rotation R_{θ} is applied then the two states become

$$
\begin{equation*}
R_{\theta}|0\rangle=\cos (\theta)|0\rangle+\sin (\theta)|1\rangle \quad \text { vs. } \quad R_{\theta}|+\rangle=\cos \left(\theta+\frac{\pi}{4}\right)|0\rangle+\sin \left(\theta+\frac{\pi}{4}\right)|1\rangle \tag{5}
\end{equation*}
$$

Since $\theta \in[0, \pi / 4], R_{\theta}|0\rangle$ is closer to $|0\rangle$ than $|1\rangle$, and $R_{\theta}|+\rangle$ is closer to $|1\rangle$ than $|0\rangle$. Therefore, we can assume that: for measurement outcome 0 the guess is 0 ; and for outcome 1 the guess is + (e.g., it's easy to check that guessing + in case of outcome 0 would lead to a lower success probability).
The average-case success probability as a function of θ is

$$
\begin{equation*}
\left.\left.p(\theta)=\frac{1}{2}\left|\langle 0| R_{\theta}\right| 0\right\rangle\left.\right|^{2}+\frac{1}{2}\left|\langle 1| R_{\theta}\right|+\right\rangle\left.\right|^{2}=\frac{1}{2} \cos ^{2}(\theta)+\frac{1}{2} \sin ^{2}\left(\theta+\frac{\pi}{4}\right) . \tag{6}
\end{equation*}
$$

For what $\theta \in[0, \pi / 4]$ is this maximized? Since $p(\theta)$ is differentable, we can use calculus to determine where the maximum is. The derivative is

$$
\begin{align*}
p^{\prime}(\theta) & =\cos (\theta) \sin (\theta)-\sin \left(\theta+\frac{\pi}{4}\right) \cos \left(\theta+\frac{\pi}{4}\right) \tag{7}\\
& =\frac{1}{2} \sin (2 \theta)-\frac{1}{2} \sin \left(2\left(\theta+\frac{\pi}{4}\right)\right), \tag{8}
\end{align*}
$$

where we have used the formula $\sin (2 x)=2 \sin (x) \cos (x)$ in Eq. (8).
The derivative is zero when

$$
\begin{equation*}
\sin (2 \theta)=\sin \left(2\left(\theta+\frac{\pi}{4}\right)\right) \tag{9}
\end{equation*}
$$

Since $\theta=\theta+\frac{\pi}{4}$ cannot occur, the only way for Eq. (9) to be satisfied is if

$$
\begin{equation*}
2\left(\theta+\frac{\pi}{4}\right)=\pi-2 \theta \tag{10}
\end{equation*}
$$

(using the fact that $\sin (x)=\sin (\pi-x)$). This occurs if and only if $\theta=\pi / 8$. Therefore the optimal rotation angle $\theta \in\left[0, \frac{\pi}{4}\right]$ must be one of $0, \frac{\pi}{8}, \frac{\pi}{4}$. It's easy to check these three cases and $\theta=\frac{\pi}{8}$ is the optimum. For $\theta=\frac{\pi}{8}$, the average-case success probability is

$$
\begin{align*}
p\left(\frac{\pi}{8}\right) & =\frac{1}{2} \cos ^{2}\left(\frac{\pi}{8}\right)+\frac{1}{2} \sin ^{2}\left(\frac{\pi}{8}+\frac{\pi}{4}\right) \tag{11}\\
& =\cos ^{2}\left(\frac{\pi}{8}\right) . \tag{12}
\end{align*}
$$

Note: For this state distinguishing problem, $\cos ^{2}\left(\frac{\pi}{8}\right)$ is also the highest worst-case success probability.
3. Suppose that

$$
\begin{align*}
\frac{1}{\sqrt{2}}|00\rangle+\frac{1}{\sqrt{2}}|11\rangle & =\left(\alpha_{0}|0\rangle+\alpha_{1}|1\rangle\right)\left(\beta_{0}|0\rangle+\beta_{1}|1\rangle\right) \\
& =\alpha_{0} \beta_{0}|00\rangle+\alpha_{0} \beta_{1}|01\rangle+\alpha_{1} \beta_{0}|10\rangle+\alpha_{1} \beta_{1}|11\rangle . \tag{13}
\end{align*}
$$

We'll show that this results in a contradiction. Eq. (13) implies

$$
\begin{align*}
& \alpha_{0} \beta_{0}=\frac{1}{\sqrt{2}} \tag{14}\\
& \alpha_{0} \beta_{1}=0 \tag{15}\\
& \alpha_{1} \beta_{0}=0 \tag{16}\\
& \alpha_{1} \beta_{1}=\frac{1}{\sqrt{2}} . \tag{17}
\end{align*}
$$

There is no solution to these equations because Eq. (15) implies that either $\alpha_{0}=0$ (which contradicts Eq. (14)) or $\beta_{1}=0$ (which contradicts Eq. (17)).

