Spaces of n-tuples and their subspaces

The linear subspaces of a vector space have a regular structure. There purpose of this note is to show some irregularities that can arise with the analogues of linear subspaces of \mathbb{Z}_{m}^{n} when m is composite. We begin by reviewing the regularity in two cases of vector spaces and then exhibit the irregularities in the case of \mathbb{Z}_{m}^{n}.

1 The space of n-tuples over \mathbb{R}

Consider the space of all 3 -tuples over \mathbb{R}, which is denoted as \mathbb{R}^{3}. A linear subspace of this is a subset that closed under taking linear combinations. In other words, a subspace is a subset $S \subseteq \mathbb{R}^{3}$ such that, for any $v_{1}, \ldots, v_{k} \in S$ and any scalars $\lambda_{1}, \ldots, \lambda_{k} \in \mathbb{R}$, the linear combination $\lambda_{1} v_{1}+\cdots+\lambda_{k} v_{k}$ is also contained in S.

Since \mathbb{R}^{3} is a vector space over the field \mathbb{R}, all of its linear subspaces are of one of these forms:

- 0-dimensional, if $S=\{0\}$.
- 1-dimensional, if $S=\operatorname{span}(v)=\{\lambda v:$ for all $\lambda \in \mathbb{R}\}$, for some non-zero $v \in \mathbb{R}^{3}$.
- 2-dimensional, if $S=\operatorname{span}\left(v_{1}, v_{2}\right)=\left\{\lambda_{1} v_{1}+\lambda_{2} v_{2}\right.$: for all $\left.\lambda_{1}, \lambda_{2} \in \mathbb{R}\right\}$, for some linearly independent $v_{1}, v_{2} \in \mathbb{R}^{3}$.
- 3-dimensional, if $S=\mathbb{R}^{3}$.

2 The space of n-tuples over \mathbb{Z}_{p}, when p is prime

When the modulus is prime, \mathbb{Z}_{p} is a field, and the space of n-tuples is also a vector space. The linear subspaces have a similar regular form. For example, for the space of all 3-tuples over \mathbb{Z}_{p} (denoted as \mathbb{Z}_{p}^{3}), all of its linear subspaces are of one of these forms:

- 0-dimensional, if $S=\{0\}$.
- 1-dimensional, if $S=\operatorname{span}(v)=\left\{\lambda v\right.$: for all $\left.\lambda \in \mathbb{Z}_{p}\right\}$, for a non-zero $v \in \mathbb{Z}_{p}^{3}$.
- 2-dimensional, if $S=\operatorname{span}\left(v_{1}, v_{2}\right)=\left\{\lambda_{1} v_{1}+\lambda_{2} v_{2}\right.$: for all $\left.\lambda_{1}, \lambda_{2} \in \mathbb{Z}_{p}\right\}$, for linearly independent $v_{1}, v_{2} \in \mathbb{Z}_{p}^{3}$.
- 3-dimensional, if $S=\mathbb{Z}_{p}^{3}$.

Moreover, every linear subspace of dimension d has exactly p^{d} elements in it.

3 The space of n-tuples over \mathbb{Z}_{m}, when m is composite

When the modulus m is composite, \mathbb{Z}_{m} is not a field and the space of n-tuples is technically not a vector space. We can still consider linear subspaces (subsets that are closed under linear combinations over \mathbb{Z}_{m}); however, these subspaces no longer have the regular form that arises in vector spaces.

As an illustrative example, consider the case of $\mathbb{Z}_{6}^{2}\left(2\right.$-tuples over $\left.\mathbb{Z}_{6}\right)$. Each of the following subsets is certainly a subspace

$$
\begin{align*}
\operatorname{span}\{(1,0)\} & =\{(0,0),(1,0),(2,0),(3,0),(4,0),(5,0)\} \tag{1}\\
\operatorname{span}\{(0,1)\} & =\{(0,0),(0,1),(0,2),(0,3),(0,4),(0,5)\} \tag{2}\\
\operatorname{span}\{(1,1)\} & =\{(0,0),(1,1),(2,2),(3,3),(4,4),(5,5)\} \tag{3}\\
\operatorname{span}\{(2,0)\} & =\{(0,0),(2,0),(4,0)\} \tag{4}\\
\operatorname{span}\{(3,0)\} & =\{(0,0),(3,0)\} \tag{5}
\end{align*}
$$

but notice that the sets are not all the same size! So if we think of them as 1-dimensional subspaces then the property that all 1-dimensional spaces have the same size does not hold.

Furthermore, notice that the set

$$
\begin{equation*}
\operatorname{span}\{(2,0),(0,3)\}=\{(0,0),(2,0),(4,0),(0,3),(2,3),(4,3)\} \tag{6}
\end{equation*}
$$

is the same as the set

$$
\begin{equation*}
\operatorname{span}\{(2,3)\}=\{(0,0),(2,3),(4,0),(0,3),(2,0),(4,3)\} \tag{7}
\end{equation*}
$$

So the same linear subspace can be expressed either as the span of two independent vectors or the span of just one single vector. Therefore, the notion of dimension is not clearly defined.

