Assignment 3

Due date: 11:59pm, October 31, 2023

1. Hidden multi-linear functions (part I) [12 points].

Let p be prime. Let $a_{1}, a_{2}, \ldots, a_{n}, b \in \mathbb{Z}_{p}$ and define $f:\left(\mathbb{Z}_{p}\right)^{n} \rightarrow \mathbb{Z}_{p}$ as

$$
\begin{equation*}
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}+b \bmod p, \tag{1}
\end{equation*}
$$

for all $x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{Z}_{p}$.
Suppose that you are given access to a black-box that, on input $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in\left(\mathbb{Z}_{p}\right)^{n}$, produces $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ as output, but you don't know what the linear coefficients $a_{1}, a_{2}, \ldots, a_{n}$ are, nor the additive constant b. Your goal is to determine the linear coefficients $a_{1}, a_{2}, \ldots, a_{n}$ exactly (meaning with success probability 1).
(a) [4 points] Prove that any classical algorithm for this problem must make at least $n+1$ f-queries.
(b) [8 points] Give a quantum algorithm that solves this problem with one f-query. The f-query is a unitary operation that maps each basis state $\left|x_{1}, \ldots, x_{n}\right\rangle|y\rangle$ to
$\left|x_{1}, \ldots, x_{n}\right\rangle\left|y+f\left(x_{1}, \ldots, x_{n}\right) \bmod p\right\rangle$,
for all $x_{1}, \ldots, x_{n}, y \in \mathbb{Z}_{p}$. Explain why your algorithm works.

2. Hidden multi-linear functions (part II) [12 points].

Let p be prime and $n \geq 2$. Let $a_{2}, \ldots, a_{n} \in \mathbb{Z}_{p}$ and $\sigma: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$ be any permutation (which means that the mapping σ is 1-to-1 and onto). Define $f:\left(\mathbb{Z}_{p}\right)^{n} \rightarrow \mathbb{Z}_{p}$ as

$$
\begin{equation*}
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sigma\left(x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n} \bmod p\right) \tag{2}
\end{equation*}
$$

for all $x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{Z}_{p}$. Note that this is similar to the function in question 1, Eq. (1), except for these two notable differences:

- In Eq. (2), the first coefficient is set to 1 (i.e., $a_{1}=1$).
- In Eq. (2), an arbitrary permutation on \mathbb{Z}_{p} is applied to $x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n} \bmod p$ (whereas, in Eq. (1), the permutation is of the restricted form $\sigma(z)=z+b \bmod p$).
Suppose that you are given access to a black-box that, on input $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in\left(\mathbb{Z}_{p}\right)^{n}$, produces $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ as output, but you do not know what the linear coefficients a_{2}, \ldots, a_{n} are, nor the permutation σ. Your goal is to determine the linear coefficients a_{2}, \ldots, a_{n}. For this question, it suffices to determine the answer with success probability at least $1-\frac{1}{p}$ in all cases (i.e., for every instance f of the form of Eq. (2)).
Give a quantum algorithm that solves this problem making only one f-query (with success probability at least $1-\frac{1}{p}$). Explain why your algorithm works.

CONTINUED ON NEXT PAGE

For questions 3, 4, and 5 below: Let $m=r \cdot s$ where r and s are two distinct prime numbers, and suppose we are given m, but not its factors r and s. Define a function $f: \mathbb{Z}_{m} \rightarrow \mathbb{Z}_{m}$ to be strictly r-periodic if it has this property:

For any $a, b \in \mathbb{Z}_{m}, f(a)=f(b)$ if and only if $a-b$ is a multiple of r.
Suppose that we have an efficient implementation of an f-query. Also, suppose that we have an efficient implementation of the Fourier transforms F_{m} and F_{m}^{*}. Then we will see how to use these to construct a quantum algorithm that finds r, the periodicity of f. (And this quantum algorithm would also factor m.)

3. Warm-up exercises [12 points; 4 each].

Consider the case where $m=35, r=7$, and $s=5$.
(a) Give an example of a function $f: \mathbb{Z}_{35} \rightarrow \mathbb{Z}_{35}$ that is strictly 7-periodic. You may give the truth table or you may give a list of 35 numbers, that we'll interpret as $f(0), f(1), f(2), \ldots, f(34)$. Although any strictly 7 -periodic function will get full marks here, please try to make your function look as irregular as you can subject to the condition of being strictly 7 -periodic.
(b) What are the colliding sets of your function in part (a)? These are the subsets of \mathbb{Z}_{35} which f maps to the same value. List these sets. Also, show that each of these sets in of the form $\{a, a+7, a+2 \cdot 7, a+3 \cdot 7, a+4 \cdot 7\}(\bmod 35)$ for some $a \in \mathbb{Z}_{35}$.
(c) List all $b \in \mathbb{Z}_{35}$ such that $b \cdot 7=0(\operatorname{in} \bmod 35$ arithmetic).
4. Using the Fourier transform to find a b such that $b \cdot r=0$ [12 points]. For any $f: \mathbb{Z}_{m} \rightarrow \mathbb{Z}_{m}$ that is strictly r-periodic, consider this quantum circuit (acting on two m-dimensional registers):

Show that the output of this circuit (more specifically, the outcome of the top measurement) is a uniformly-distributed random element of the set $\left\{b \in \mathbb{Z}_{m}\right.$: such that $\left.b \cdot r=0\right\}$.
The analysis here is similar to that in Section 8.4 of the posted lecture notes on Quantum Algorithms. This is a $d=1$ case; whereas the lecture notes analyzes a $d=2$ case. You can use the notes as a guide; however, some of the details are different, and your analysis should be fully self-contained. You may assume the fact that, for any primitive k-th root of unity of the form $\omega=e^{2 \pi i / k}$ and $a \in\{1,2, \ldots, k-1\}$, it holds that $\sum_{j=0}^{k-1} \omega^{a \cdot j}=0$.

5. Deducing r from b [$\mathbf{1 2}$ points].

Suppose that you are given a random $b \in \mathbb{Z}_{m}$ subject to $b \cdot r=0$. Explain how to efficiently deduce r from m and b. You may use the fact that there is an efficient classical algorithm for computing the largest common divisor of two numbers. Note that some b 's are useless; the success probability should be at least $\frac{1}{2}$.

6. (This is an optional question for bonus credit)

Factorizing certain two-variable polynomials [8 points; 4 each].

Let m be an integer such that $m \geq 2$. Let $a, b \in \mathbb{Z}_{m}$ and define $f: \mathbb{Z}_{m} \times \mathbb{Z}_{m} \rightarrow \mathbb{Z}_{m}$ as

$$
\begin{equation*}
f(x, y)=(x-a)(y-b) \bmod m, \tag{3}
\end{equation*}
$$

for all $x, y \in \mathbb{Z}_{m}$.
Suppose that you are given access to a black-box that, on input (x, y), produces $f(x, y)$ as output, but you do not know what the constants a and b are. Your goal is to determine a and b exactly (meaning with success probability 1).
(a) Show that any classical algorithm for this problem requires at least three f-queries.
(b) Give a quantum algorithm that solves this problem with one f-query. The f-query is a unitary operation that maps basis states $|x, y\rangle|z\rangle$ to $|x, y\rangle|z+f(x, y) \bmod m\rangle$, for all $x, y, z \in \mathbb{Z}_{m}$. Explain why your algorithm works.

Note: If you submit a solution to this question then there is a size-limit of one page for part (a) and one page for part (b). In fact, each part has a solution that can be clearly explained in less than half a page.

