Introduction to Quantum Information Processing (Fall 2022)

Assignment 4 Due date: 11:59pm, November 10, 2022

1. Strictly periodic functions on \mathbb{Z}_m : a few warm-up questions [12 points; 4 each]. Define a function $f : \mathbb{Z}_m \to \mathbb{Z}_m$ to be *strictly r-periodic* if it has this property:

f(a) = f(b) if and only if a - b is a multiple of r (for any $a, b \in \mathbb{Z}_m$).

Consider the case where m = 35, r = 7, and s = 5.

- (a) Give an example of a function $f : \mathbb{Z}_{35} \to \mathbb{Z}_{35}$ that is strictly 7-periodic. You may give the truth table or you may give a list of 35 numbers, that we'll interpret as $f(0), f(1), f(2), \ldots, f(34)$. Although any strictly 7-periodic function will get full marks here, please try to make your function look as irregular as you can subject to the condition of being strictly 7-periodic.
- (b) What are the *colliding sets* of your function in part (a)? List these sets. Also, each of colliding sets for your example satisfies the property that it of the form $\{a, a + 7, a + 2 \cdot 7, \ldots, a + (s 1) \cdot 7\}$ for some $a \in \mathbb{Z}_{35}$.
- (c) List all $b \in \mathbb{Z}_{35}$ such that $b \cdot 7 = 0$ (in mod 35 arithmetic).
- 2. Strictly periodic functions on \mathbb{Z}_m : behavior of a quantum circuit [12 points]. Suppose that $m = r \cdot s$ where r and s are distinct primes and $f : \mathbb{Z}_m \to \mathbb{Z}_m$ is strictly r-periodic (as defined in question 1). Consider this quantum circuit, which acts on two m-dimensional registers, and where F_m is the Fourier transform.

Show that the output of this circuit (more specifically, the outcome of the top measurement) is a uniformly-distributed random element of the set $\{b \in \mathbb{Z}_m : \text{such that } b \cdot r = 0\}$.

(Although you are not asked to show it here, this is one approach for determining the periodicity r of f: compute the greatest common divisor of b and m. It turns out that, for at least half of the possible values of b, gcd(b,m) = r.)

Hint: You may assume the fact that, for any $k \ge 2$ and $a \in \{1, 2, \dots, k-1\}$, it holds that

$$\sum_{j=0}^{k-1} \left(e^{2\pi i/k} \right)^{a \cdot j} = 0.$$
 (1)

3. Some basic questions about density matrices [12 points; 4 each].

(a) Show that for any $d \times d$ matrix ρ that is normal, positive, and for which $\operatorname{Tr}(\rho) = 1$ there exist d-dimensional state vectors $|\psi_0\rangle, |\psi_1\rangle, \ldots, |\psi_{d-1}\rangle$ and a probability vector $(p_0, p_1, \ldots, p_{d-1})$ such that

$$\rho = \sum_{k=0}^{d-1} p_k |\psi_k\rangle \langle\psi_k|.$$
(2)

- (b) Suppose that ρ_1 and ρ_2 are 2×2 density matrices with the property that, if measured in the computational basis, their outcome probabilities are exactly the same. Does that imply that $\rho_1 = \rho_2$? Show that the answer is no, by giving two different density matrices for which these outcome probabilities are nevertheless the same.
- (c) Now suppose that ρ_1 and ρ_2 are 2×2 density matrices with the property that, if measured in the computational basis, the outcome probabilities are the same *and* if measured in the Hadamard basis the outcome probabilities also are the same. Does this imply that $\rho_1 = \rho_2$? Either state that the answer is no and give a counterexample, or state that the answer is yes, and prove it.

4. Kraus operators for two channels [12 points; 6 each].

- (a) Consider the quantum channel that takes a qubit as input and produces as output a qubit in state $\frac{1}{2}|0\rangle\langle 0| + \frac{1}{2}|1\rangle\langle 1|$ (regardless of what the input state is). Give a description of this channel in the Kraus form. That is, give Kraus operators for this channel.
- (b) Consider the quantum channel that takes a qubit as input and produces as output a qubit in state $|0\rangle\langle 0|$ (regardless of what the input state is). Give a description of this channel in the Kraus form. That is, give Kraus operators for this channel.

5. Applying a qubit channel to one qubit of a 2-qubit system [12 points].

Let $\chi : \mathbb{C}^{2\times 2} \to \mathbb{C}^{2\times 2}$ be a quantum channel that maps qubits to qubits, with Kraus operators A_1, A_2, \ldots, A_k . Applying χ to the *second* qubit of a 2-qubit system is defined as $I \otimes \chi : \mathbb{C}^{4\times 4} \to \mathbb{C}^{4\times 4}$ with Kraus operators $I \otimes A_1, I \otimes A_2, \ldots, I \otimes A_k$. Show that applying $I \otimes \chi$ to $\rho \in \mathbb{C}^{4\times 4}$ results in

$$\begin{pmatrix} \chi(\rho_{00}) & \chi(\rho_{01}) \\ \chi(\rho_{10}) & \chi(\rho_{11}) \end{pmatrix}, \quad \text{where} \quad \rho = \begin{pmatrix} \rho_{00} & \rho_{01} \\ \rho_{10} & \rho_{11} \end{pmatrix}$$
(3)

is the decomposition of ρ into four 2 × 2 blocks (i.e., ρ_{00} , ρ_{01} , ρ_{10} , $\rho_{11} \in \mathbb{C}^{2 \times 2}$).

- 6. (This is an optional question for bonus credit)
 - Expressing a qutrit as an equally weighted mixture of pure states [6 points]. Let ρ be an arbitrary 3×3 matrix that is the density matrix of the mixed state of a qutrit. Show that there exist three normalized vectors $|\psi_1\rangle, |\psi_2\rangle, |\psi_3\rangle \in \mathbb{C}^3$, representing pure states, such that $\rho = \frac{1}{3} |\psi_1\rangle \langle \psi_1| + \frac{1}{3} |\psi_2\rangle \langle \psi_2| + \frac{1}{3} |\psi_3\rangle \langle \psi_3|$. Note that $|\psi_1\rangle, |\psi_2\rangle, |\psi_3\rangle$ are not required to be orthogonal here.

There is a solution that can be explained in less than one page. If you submit a solution to this question, please do not exceed two pages.