Introduction to Quantum Information Processing (Fall 2022) QIC710/CS768/CO681/PHYS767/AMATH871/PMATHS871

Assignment 3 [question 3(c) revised]
Due date: 11:59pm, October 27, 2022

1. A simple collision-finding problem [15 points]. Call f : {0,1}* — {0,1} a two-
to-one function if there are exactly two a € {0,1}? such that f(a) = 0 and exactly two
a € {0,1}? such that f(a) = 1. Consider the problem where one is given such a function
as a black-box and the goal is to find a collision, which is a pair a,b € {0,1}? such that

a#band f(a) = f(b).

(a) [3 points] How many queries to f does a classical algorithm require to find a collision?
The algorithm must always succeed (the error probability for any run should be 0).

(b) [12 points] Show how to solve this problem by a quantum algorithm that makes one
single query to f. The algorithm must always succeed (the error probability for any
run should be 0).

2. Control-target inversion for mod m registers [15 points]. Consider a scenario
where the registers are m-dimensional (m > 2). Let the computational basis states
be 0),|1),...,|m — 1). Define the two-register addition (mod m) gate as the unitary
operation that acts on the computational basis states as

la) ——e—— |a)
|b) ——P—— |b+ a mod m)

(where a,b € Z,,). In the above circuit diagram, each wire represents an m-dimensional
system (a qubit in the special case where m = 2).

(a) [9 points] Prove that, for any m > 2, the following circuit equivalence holds:
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where F,, is the m x m Fourier transform.

(b) [6 points] Consider the following circuit diagram where the F, and F} are arranged
in a slightly different way:
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Give a simple expression for what the circuit does to computational basis states
la)|b) (for a,b € Z,,). There is a very simple expression.



3. Computing F},, in terms of F}, and F, [15 points]. Our construction of Fyn is in terms
of n computations of Fy (Hadamard gates) with phase adjustment gates inserted between
these F, gates. For the case where m = pipy---pg, where py, po, ..., pr are distinct
primes, there is a construction of F,, in terms of F}, , F,, ..., F}, that doesn’t require
any phase adjustments. The idea is that F}, is the same matrix as F),, ® F},, ® --- ® [},
up to a reordering of the rows and columns. Here we explore a simple case of this.

(a) [3 points] Write out the 6 x 6 matrix of Fg, the 3 x 3 matrix of F3, and the 2 x 2
matrix of Fj.

(b) [4] Write out the 6 x 6 matrix of Fy ® F3.
(c) [8] Show that there exist 6 x 6 permutation matrices P and () such that

Fs = P(I, ® F3)Q, (1)

where a permutation a matrix has exactly one 1 in each row, and in each column,
and all other entries are 0.

(In fact, this generalizes to Fym, = P(Fn, ® F,)Q whenever m; and msy are
relatively prime, but you are not asked to show this more general result.)

4. Computing the “square root” of a quantum circuit [15 points]. Suppose that
you are given a quantum circuit acting on n qubits consisting of m 2-qubit gates. It
corresponds to some 2™ x 2™ unitary matrix U, but, in general, there is no way of efficiently
calculating all the entries of U from the circuit. Suppose that we want to construct another
circuit that computes a square root of U (i.e., a unitary V such that V? = U). You can
check that just taking the square root of each individual gate in the original circuit U
does not yield such a V.

We will use a clever trick involving the eigenvalue-estimation algorithm to do this effi-
ciently. We just consider a simplified case where we are promised that all the eigenvalues
of U are in {41, —1}; however, the basic approach can be extended to the arbitrary case.

If the eigenvalues of U are assumed to be in {41, —1}, there exists a unitary matrix W
such that U = W*DW | where D is a diagonal matrix of the form

(_1)d0 0 0
6 () (_1).112”71

for some dy,dy,...,don_1 € {0,1}. It’s easy to see that a square root of D is

id 0
0 % 0
: : (3)
0 0 §92m-1

where 1 = /—1.



Now, assume that we're given a circuit computing U with m 2-qubit gates and are
promised that the eigenvalues of U are all in {41, —1}. To be clear, although the afore-
mentioned W and D exist mathematically, the circuit for U that we’re given is not in the
form of a composition separate circuits for W*, D, W; our circuit is just some jumble of
2-qubit gates.

(a) [3 points|] Explain how, given a circuit for U consisting of m 2-qubit gates, we can
construct a circuit for a controlled-U and a controlled-U*, where each consists of
m 3-qubit gates. (These could be converted to circuits consisting of O(m) 2-qubit
gates, but you are not asked to show that.)

(b) [3 points|] Prove that, for all k € {0,1}" = {0,1,...,2" — 1}, the vector W*|k) is an
eigenvector of U with eigenvalue (—1)%. (W is as explained on the previous page.)

(c) [6 points] Consider this quantum circuit that we’ll refer to as C' (where the 1-qubit
gate G is yet to be determined):

U U~

Notice that this circuit begins as a circuit for phase estimation, followed by a 1-qubit
gate G, followed by the inverse of the phase estimation circuit. Of course, if we were
to set G = I then the above circuit would just compute the identity operation on
n + 1 qubits. Choosing the right setting for G will make the circuit interesting.

Show how to set the 1-qubit gate G so that, for all k € {0,1,...,2" — 1},
C(|0) ® (W*[k))) = [0) ® (i W*[k)) (4)

(where i = v/—1). Include an explanation of why your choice of G works.

(d) [3 points| Explain why Eq. (4) from part (c) implies that, for some unitary V' such
that V2 = U, it holds that, for all n-qubit states |t)),

C(10) ® [v)) =10) @ (V]i)). (5)

5. (This is an optional question for bonus credit)
Fully identifying a function f: {0,1} — {0,1} [6 points]. Recall that, in Deutsch’s
problem, we are given a black-box for an arbitrary function f : {0,1} — {0, 1}, but we are
not required to fully identify which of the four possible functions f is. Here we consider
the problem where the goal is to correctly guess which of the four functions f is.

It’s easy to deduce that, with a single classical f-query, the best success probability
achievable is 3.

Give a quantum algorithm that makes a single f-query and correctly guesses f with
success probability %. Assume that the f is a worst-case instance for your algorithm.

(Warning: this might be more challenging than the two previous bonus questions.)



