Introduction to

Quantum Information Processing
QIC 710/ CS 768 / PH 767 / CO 681 / AM 871

Lectures 6—8 (2019)

Richard Cleve
QNC 3129
cleve@uwaterloo.ca

© Richard Cleve 2020



Discrete log problem



Discrete logarithm problem (DLP)

Input: p (prime), g (generator of Z,*), a € Z,*

Output: 7 € Z,_; such that g" mod p = a

Example: p =7, Z;*={1,2,3,4,5,6} = {30, 32, 31 34 35 33
(hence 3 is a generator of Z;%)

For a = 6, since 33= 6, the output should be =3

Note: No efficient classical algorithm for DLP is known
(and cryptosystems exist whose security is predicated on
the computational difficulty of DLP)

Efficient quantum algorithm for DLP?
(Hint: it can be made to look like Simon’ s problem!)
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DLP similar to Simon’s problem

Clever idea (of Shor): define f: Z,.x Z,, — Z,* as
f(x;,x,)=ga™*modp (can be efficiently computed)

Whenis f(x;,x,)=f(v,,v,)?
We know a =g" forsomer,so f(x,,x,)=g* ™2modp
Thus, f(x,,x,) =f (v, y,) iff x,—rx,=y,—ry, (mod p-1)
iff (x1, x2)-(1,—7) = (v, 12)-(1,—7)  (mod p-1)
iff ((x1, X2) = (V1,12))-(1,—= ) =0 (mod p-1)

(1,-7)
iff (x1,x,) — (V1. 2) =k(r, 1) (mod p-1) (r, 1)

Recall Simon’s property: f(x) = f(y) iff x-y = k¥ (mod 2) Zp1% Zp- 4
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Simon’s problem modulo m

The function arising in DLP can be abstracted to the following

Given: f: Z,x Z,— T with the property that:
f(xl 9x2) =f(yl:y2) iff (xla -XZ) _ (yb yZ) = k(rla 7”2) (IIlOd m)

where (7, ) is the hidden data

Goal: determine (7, r,) Note: in DLP case, (7, r,) = (7,1)

The reversible query box for f is:

X)) —— ——  x) where each “wire”

X)) — f ) denotes many qubit
T wires, to represent |H

12 D b +f (x1.x2)) elements of Z, like:

Not a “black™ box, because we can simulate it by 1-qubit
and 2-qubit gates (and this can be done efficiently) ... 5
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Digression:

on simulating black boxes



How not to simulate a black box

Given an efficiently (classically) computable function, over
some finite domain, such as f (x) = g*1a™2 mod p, simulate
f-queries over that domain

Easy to compute mapping [x)[))[00...0) — |x)[y®f (x))|g(x)),
where the third register is “work space” with accumulated
“garbage” (e.g., two such bits arise when a Toffoli gate is
used to simulate an AND gate)

This works fine — as long as f is not queried in superposition
If f is queried in superposition then the resulting state can be
2o, POp@f(x)lgx))y can we just discard the third register?

No ... there could be entanglement ...
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How to simulate a black box

Simulate the mapping |x)[))|00...0) - [x)[yDf(x))|00...0),
(i.e., clean up the “garbage”)

To do this, use an additional register, and:

1. compute [x)[1)|00...0)|00...0) — [x))|f (x))|2(x))
(ignoring the 2" register in this step)

2. compute )[y)lf (x))[g(x)) = )Ef (X))If (x))|g(x))
(using CNOT gates between the 2" and 3 registers)

3. compute )[yDf (xX))|f(xX))gx)) » [x)[y@Df(x))00...0)00...0)
(by reversing the procedure in step 1)

Total cost: around twice the classical cost of computing f,
plus n auxiliary CNOT gates
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Simon’s problem modulo m

So now we have an efficient way of implementing the
reversible black box for f

|x1> — —— |x1> |x1> |x1>
|x2> — f — |x2> |x2> |x2>
) & pH D) ) '” Y+ (r0))

Reminder: each “thick wire” denotes several qubits, to represent an
element of Z, (eqg, {0,1,2,3,4,5,6} ={000,001,010,011, 100, 101, 110})
OK, so what about a quantum algorithm for this problem??

To get one, we go beyond the Hadamard transform, which
has been our main tool so far, to ...
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Quantum Fourier transform (QFT)

10



Quantum Fourier transform

1 1 1 1 1
1 w w* W’ ™!
F 1 1 (1)2 0)4 0)6 wZ(m—l)
m ~Nm| 1 W’ w° W’ @ "
_ _ _ _ 2
1 60m 1 a)2(m 1) a)3(m 1) . a)(m 1)

where @ = e>™/m (for n qubits, m = 2")
This is unitary and F, = H, the Hadamard transform

This generalization of H is an important component of
several interesting quantum algorithms ...
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Quantum algorithm for Simon mod m (1)
S x1,%) =f (i) iff (x1,%,) = (v1,,) =k(r, 1) (mod m)

0O)—E f Fi—D—1_turns out that the result is a random (51,8,)

0
Oi - T P~ such that (51,8,)(7, 1) =0 (mod m)

The state right after the query is % D el f (e, w2))

T1E€Ly, T1 EZm

Now, if the third register is measured in the computational
basis then it collapses to some value, and state of the first
two registers is a superposition of all (x,, x,) that f maps to
that value, which is a state of the form

1
NG > |y + kry)|wa + ko)

k€Zm,

B L(‘($1,2102)> + (@1, 22) + (r1,72)) + -+ + [(1, 22) + (M — 1>(T1’T2)>)

Jm

12
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Quantum algorithm for Simon mod m (2)

Here is the state again:

1
ﬁ Z |$1 -+ k?"1>|$2 -+ k?"2>

k€l

B \/%(le,m» +[(z1,22) + (r1,72)) + -+ + (21, 22) + (M — 1)(T1’T2>>)

The next step is to apply the two inverse Fourier transforms mod m, yielding

1 1
(FT];L %9 an)ﬁ Z |$1 + ]43?“1>|£CQ -+ kr2> = — Z F;H:Ul + k’?“1>an|$2 + ]{?“2>

m
k€Zm, k€Zm,

N mi/z D D wnEmHEms) Y moalrathna)gy)

kGZm S1 EZm SZGZm

— \/_1% Z Z (% Z w(81,82)'((931@2)4-7?(7“1;7“2))) |51, $2)

s1 82 kE€EZLm

1 1
= \/—m Z w_(31752)‘(901a902) (E Z w_(51,82)‘(7’1,?”2)k> |$1,82>

51,82 kEZm

13
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Quantum algorithm for Simon mod m (3)
Note that ¢

m 0 otherwise

Z w_(81,s2)'(7"1,7’2)k — {1 if (51782) ) (7“1,7“2) =0

k€Zm,

So the amplitudes of all basis states |s;,s,) where (si,s2) - (r1,72) #0 are zero

Therefore, if the first two registers are measured, the result is a random (s, s,)
subject to the condition that it has dot product 0 with (r,r,)

The dot product condition implies that (-1, ) satisfies the linear relationship
s1r1 + s2r2 =0 (mod m)

As with Simon’s problem, we can repeat this process until we have enough
linear relationships to deduce (r1,72)

A complication is that, if the modulus m is not prime the we are not working
over a field, so we are outside the framework of linear algebra

For the Discrete Log Problem, m = p — 1 (which is not prime) and (r1,r2) = (1,7)
14
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Quantum algorithm for Simon mod m (4)

In the context of DLP, we have (s1,s2) - (r,1)=s1r+s2 =0 (mod p—1)
If s, has an inverse then we can solve for r as r=—s, /s,

In our mod p — 1 arithmetic, if s; and p — 1 are coprime (see below) then s,
has an inverse mod p — 1

Moreover, the probability that s, and p — 1 are coprime occurs is not too
small (and if it fails on one run then the algorithm can be run again)

Definition: a, and a, are coprime if their largest common divisor is 1 (for example,
12 land 21 are not coprime, since 3 is a common divisor, but 10 and 21 are coprime)

Lemma: if ¢, and a, are coprime then a; has an inverse modulo a,

Proof idea: the Extended Euclidean Algorithm implies that if a; and a, are coprime
then there exist integers b, and b, such that ,a;, + b,a, =1
(e.g., for 10 and 21, we have (-2)10 + (1)21 =1)

This implies that bya; = 1—-ba; so bja; =1 (mod as)
Therefore b, = a; ' mod a, 15
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Quantum algorithm for Simon mod m (5)

Steps that have been shown to be efficiently implementable
(i.e., in terms of a number of 1- and 2-qubit/bit gates that

scales polynomially with respect to the number of bits of m):
« Implementation of reversible gate for f
* The classical post-processing at the end

What’s missing?
Implementation of the QFT ¥ modulo m (=p — 1 for DLP)

Here, we'll just show how to implement the QFT for m = 2"

Shor did this too, and showed that if the modulus is within a

factor of 2 from p — 1, by using careful error-analysis, this
was good enough, though the calculations and analysis
become more complicated (we omit the details of this) 16
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Continuing with the

QFT for m=2"



Quantum Fourier transform

1 1 1 1 1
1 w w* W’ ™!
F 1 1 (1)2 0)4 0)6 wZ(m—l)
m ~Nm| 1 W’ w° W’ @ "
_ _ _ _ 2
1 60m 1 a)2(m 1) a)3(m 1) . a)(m 1)

where @ = e>™/m (for n qubits, m = 2")
This is unitary and F, = H, the Hadamard transform

This generalization of H is an important component of
several interesting quantum algorithms ...
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Computing the QFT for m =2" (1)

Quantum circuit for F5,:

—H
l Hi~(4)-(8)-19

s}iqnb jo uap.uo
9SJ9Adl pue

_ 1o :(i):
Gates: —H _f{l _J .

oS = O O
S

oS O = O

| |
o o o =

19
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Computing the QFT for m =2" (2)

Binary numbers (base-two representation of integers)

We identify {000, 001,010,011,100,101,110,111} ={0,1,2,3,4,5,6,7}
Formally, for a = a,a,...a,, define (a,a,...a,) to be the corresponding integer

Binary fractions (base-two representation of rational numbers)

What are (0.1)?, (0.01), (0.11)?
As in the base-ten case, shifting the radix point left by is equivalent to dividing

by the base number
Therefore, (0.1) =4(1.0) =, (0.11) = %4(11.0) = 4(3) = % (etc)

Some expressions involving binary fractions

eZTCi(0.0) =1, e27ci(0.1) —_1
ezfci(1.0) =1, ezni(1.1) —_1
627ci(0.01) = 82751'(0.11) —

20
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Computing the QFT for m =2" (3)

One way on seeing why this circuit works is to show:

1. Forall a,a,...a, € {0,1}", on input state |a,a,...a,)
the output of the circuit (before reversing the qubits) is

(\O) + ezni(O.alaz...an)| 1 >)(|O> + eZni(O.az...an)| 1 >) o (|0> + ezm’(O.an)H >)

2. And then
(|O> + e271'i(0.dn)| 1 >) o (|O> + 82ni(0.a2...an)| 1 >) (|O>+ ezni(O.alaz...an)| 1 >)

= (|0)+ " @ 1))...(10)+*@ 1)) (|0)+ 0 @)|1))

2" —1

= /on > W k) (where o = 2™/2")

Exercise: show these two steps in detalil 21
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Summary of DLP algorithm

Implement f(x) = g¥1 a2 mod p reversibly
and F,» where 2"l< p—-1<2"

~

Execute this circuit: 0)—
0)—aJ

0) ®

)

D
-D—

~

If the measured results are s, and s, where s;and p — 1
are coprime then output r =—s,/s; mod p — 1
(otherwise, execute above circuit again)
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Hidden Subgroup Problem framework
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Aside: hidden subgroup problem
(commutative version)

Let G be a known group and A be an unknown subgroup of G

Let /: G — T have the property f(x)=f(y)iffx—-ye H
(i.e., xand yare in the same coset of H)

Problem: given a black-box for computing f, determine H

Example 1: G =(%)" (the additive group) and H = {0,r}

Example 2: G =(Z, _,)? and
H=1{0,),1),Q2r2),...(p—2rp—2)}

Example 3: G = Z and H =rZ (Shor’s factoring algorithm

was originally approached this way. A complication that arises

is that Zis infinite. We'll use a different approach) o
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Aside: hidden subgroup problem
(noncommutative version)

Example 4: G =§, (the symmetric group, consisting of all
permutations on n objects—which is not commutative) and
H is any subgroup of G (and we use left cosets throughout)

A quantum algorithm for this instance of HSP would
lead to an efficient quantum algorithm for the graph
Isomorphism problem ...

Y

... alas no efficient quantum has been found for this
instance of HSP, despite significant effort by many people
25
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Eigenvalue estimation problem

(a.k.a. phase estimation)

Note: this will lead to a factoring algorithm similar to Shor’s
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A simplified example

U is an unknown unitary operation on n qubits

') is an eigenvector of U, with eigenvalue A= +1 or -1

Input: a black-box for a controlled-U

and a copy of the state |y)

} n qubits

Exercise: solve this making a single query to the controlled-U

Output: the eigenvalue A4

27

© Richard Cleve 2020



Generalized controlled-U gates

a) T a) B _
I 0
b)— U |— U“b) 0 U
/] 0 0
a,,) ' a,,) 0 0 U*?
b1) — —}U i ST
- - al...am| >
LU= 0 0 o

Example: [1101)[0101) +~ [1101)U"°"0101)
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Eigenvalue estimation problem

U is a unitary operation on 7 qubits

) is an eigenvector of U, with eigenvalue ¢>™®

0<¢<1)

m qubits
} and a copy of [y)

} n qubits

Input: black-box for

Output: ¢ (m-bit approximation)

29
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Algorithm for eigenvalue estimation (1)

S ff as: 0)
tarts off as: 0)

LSl )1
%

T [ =

0)
\

00 ... O)|y)

)by — |a)U“|b)

= (10) + 1) (10) + 1)) ... (10) + [1) [w)
= (J000)Y + [001) +[010) + [0O11) + ...+ [111)) W)

= (|0)+ 1Y+ 2)+|3)+ ...+ |2m—1>)|\|1>

= ( O>_|_e27ti(|)|1 >_|_(e2ni(|))2|2>+(e2ni(l))3|3>+ o +(e27ci(l))2m—1|2m_l>) |\|]>

30
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Algorithm for eigenvalue estimation (2)

} > e
0)—
V) |\|f>

Recall that FM‘alaz m> E( 27i(0.a,a,.. a))

0>
0>

Sy issfjiss

11 | i ... 1 1 |Therefore, when
) S o ¢ =0.a,a,...a,
F 11 e ) ™’ - M _ )
M T o) e .o oo | [applying the inverse
L f T of F,,yields ¢ (digits)
1 ™MD 2D 3D w M

31
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Algorithm for eigenvalue estimation (3)

0>

& E T

W) W)

If  =0.a,a,...a,,then the above procedure yields |a,a,...a,,)
(from which ¢ can be deduced exactly)

1

Sy][ISS|fSs

But what ¢ if is not of this nice form?

Example: ¢ =% =0.0101010101010101...

32
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Algorithm for eigenvalue estimation (4)

What if ¢ is not of the nice form ¢ =0.a,a,...a,,?
Example: ¢ =% =0.0101010101010101...

Let’'s calculate what the previously-described procedure does:

Let a/2™ = 0.a,a,...a,,be an m-bit approximation of ¢,
in the sense that ¢ =a/2"™ + § , where |5| < 1/2m*1
— ( 2m¢)"‘ Z Ze—mey/Zm 27n¢x

y=0 x=0

-12" - . 15
ZO ZO —27rzxy/2 (2 }L‘y>
% x=

y)

2’" -1 2" -

What is the 2m_]

-1
amplitude of :> Z Ze2m a—y)x/2" 270X
y=0

la,a,...a,,) ? x=0

33
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Algorithm for eigenvalue estimation (5)

—-12"—
o 27i(a-y) x/2m 2 7idx geometric
State is: E E e y) orice!
y O X= O . 2]’}’1
1 (6272'15)

1 1-

The amplitude of ) , fory=ais — » ™ = .
p I.y> y 2m XZ:(; zm 1_827Zl5

eZﬁi82m

eZTElS
b1

Numerator: Denominator:

lower bounded by upper bounded by 21

2n82m(2/m) > 452"

Therefore, the absolute value of the amplitude of |y) is at least
the quotient of (1/2")(numerator/denominator), which is 2/n "
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Algorithm for eigenvalue estimation (6)

Therefore, the probability of measuring an m-bit approximation
of ¢ is always at least 4/~ 0.4

For example, when ¢ =1 =0.01010101010101... , the outcome
probabilities look roughly like this:

4
%
| . |' —
0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1000 1101 1110 1111

¢

Note: with 2m-qubit control gate, error probability is exponentially small 35
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